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We build in this paper the algebra gfdeformed pseudo-differential operators, shown

to be an essential step toward setting-deformed integrability program. In fact, us-

ing the results of thig|-deformed algebra, we derive tlgeanalogues of the gener-
alized KdV hierarchy. We focus in particular on the first leading orders of ghis
deformed hierarchy, namely tloeKdV andg-Boussinesq integrable systems. We also
present thej-generalization of the conformal transformations of the currapis >

2, and discuss the primary condition of the fieM&, n > 2, by using the Volterra
gauge group transformations for tigecovariant Lax operators. An induced B){
Toda(su(2)-Liouville) field theory construction is discussed and other important features
are presented.
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1. INTRODUCTION

An interesting subject which has recently been studied from different point
of views deals with the field of nonlinear integrable systems and their various
higher and lower spin extensions (Bakas, 1989a,b; Bouwknegt and Schoutens,
1992; Das, 1987, Faddeev and Takhtajan, 1987; Fateev and Zamolodchikov, 1988;
Jimbo and Miwa, 1990; Kupershmidt, 1990; Lax, 1968, 1975; Manin and Radul,
1985; Mathieu, 1988a,b; Saidit al, 1995a,b; Smit, 1990; Yamagishi, 1988;
Zamolodchikov, 1985). These are exactly solvable models exhibiting a very rich
structure in lower dimensions and are involved in many are as of mathematical
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physics. Onerecalls, forinstance, the two-dimensional Toda (Liouville) fields theo-
ries (Alvarez-Gaura’and Gomez, 1991; Bakas, 1989a,b; Manin and Radul, 1985;

Mansfield, 1982, 1983; Mathieu, 1988a,b; Olive and Turok, 1986; Smit, 1990;

Yamagishi, 1988) and the KdV and KP hierarchy models (Bakas, 1989a,b; Das,
1989; Faddeev and Takhtajan, 1987; Jimbo and Miwa, 1990; Kupershmidt,
1990; Lax, 1968, 1975; Manin and Radul, 1985; Mathieu, 1988a,b; Smit,

1990; Yamagishi, 1988), both in the bosonic as well as in the supersymmetric
case.

Nonlinear integrable models are associated to systems of nonlinear differen-
tial equations, which we can solve exactly. Mathamatically these models have be-
come more fascinating by the introduction of some new concepts such as the infinite
dimensional Lie (super) algebras (Cornwell, 1989; Humphreys, 1972; Kac, 1977),
Kac-Moody algebras (Xian, 1991), W-algebras (Bouwknegt and Schoutens, 1992;
Fateev and Zamolodchikov, 1988; Saddial, 1995a,b; Zamolodchikov, 1985),
guantum groups (Benkaddoetral,, 1998; Drinfeld, 1987; Faddeev, 1984; Jimbo,
1985, 1986; Wess and Zumino, 1990), and the theory of formal pseudo-differential
operators (Bakas, 1989a,b; Das, 1989; Faddeev and Takhtajan, 1987; Jimbo and
Miwa, 1990; Kupershmidt, 1990; Lax, 1968, 1975; Manin and Radul, 1985;
Mathieu, 1988a,b; Saidi and Sedra, 1994a; Sedra, 1996; Smit, 1990; Yamagishi,
1988). Note, by the way, that techniques developed for the analysis of nonlinear
integrable systems and quantum groups can be used to understand many features
appearing in various problems of theoretical physics (Benkaddour and Saidi, 1999;
Maroufi et al, submitted; Saidet al,, 1995a,b; Saidi and Sedra, 1993, 1994b,c;
Sedra, 1998).

Recall that, since symmetries play an important role in physics, the principal
task of quantum groups consists in extending these standard symmetries to the
deformed ones, which might be used in physics as well.

Motivated by the relevance of both the generalized integrable KdV hierar-
chies and quantum deformations, we focus in this work to present a systematic
study of bidimensionaf-deformed nonlinear integrable models. We start then
in Section 2 by presenting the algebra gpfleformed pseudo-differential op-
erators. This provides the basic ingredients, which we need iw-ttheformed
integrability framework. Using these backgrounds, we will build, in Section 3,
the g-analogues of the generalised KdV hierarchy. We will concentrate in par-
ticular on the first leading orders of this hierarchy, namely qH€dV and g-
Boussinesq integrable systems. In Section 4, we preseng-theneralization
of the conformal transformations of the currents > 2, and discuss the pri-
mary condition of the field¥V,, n > 2, by using the Volterra gauge group trans-
formations for theq-convariant Lax operators. An induced s)i{Toda(su(2)-
Liouville) field theory construction is presented in Section 5. Other important
results and some useful formulas are reported in Appendices A-E. Finally, we give
conclusions.
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2. THE ALGEBRA OF g-DEFORMED PSEUDO-DIFFERENTIAL
OPERATORS

We start in this section from the well-knowagrdeformed derivation law,
d; = 1+ qz0 (Benkaddouret al, 1998; Drinfeld, 1987; Faddeev, 1984; Jimbo,
1985, 1986; Wess and Zumino, 1990) and derivegtamalogue of the Leibnitz
rule for both local and nonlocal differential operators. This result, which gives
naturally the algebra af-deformed (pseudo)-differential operators, will provide
a way for generating a hierarchy gfdeformed Lax evolution equations.

2.1. The Ring ofg-“Analytic” Currents

To start let us precise that the deformation paramgtee consider in this
study is assumed to be a nonvanishing positive nurhBemsider then the follow-
ing g-deformed derivation rule (Benkaddatral, 1998; Drinfeld, 1987; Faddeev,
1984, Jimbo, 1985, 1986; Wess and Zumino, 1990):

0z=1+q2, (2.1)

where the symba stands for thej-derivativedg = 8q = (5,

As we already know, “conserved” currents are |ngred|ents that we highly
need in the programs of nonlinear integrable models and two-dimensional con-
formal field theory building. As we are interested in the present study to set up
the basic tools toward extending such programg-tmalogue ones, we will try
to describe first the ring of arbitrany-“analytic” fields which we denote bfr.
Following the analysis developed in Saidi and Sedra (1994a) and Sedra (1996),
this space describes a tensor algebra of fields of arbitrary conformal spin. This is a
completely reducible infinite dimensional SO(2) Lorentz representation (module)
that can be decomposed as

R= 2 R®O (2.2)

whereRﬁO'o) = Ry are one-dimensional spkairreducible modules generated

by theg-“analytic” fieldsuk(z) of “conformal” spink € z. The upper indices (0,0)
carried byR, and that we shall drop whenever no confusion can arise, are special
values of general indices, (S) introduced in Saidi and Sedra (1994a) and Sedra
(1996) and referring to the lowest and highest degrees of some pseudo-differential
operators.

Inspring from the derivation law Eq. (2.1), we introduce in this ring a
g-deformed derivativd = dq satisfying

duk(2) = up(2) + q*uk(2)9, (2.3)
4This means thal € R*. However, if we suppose thate C, then we shall imposgto differ from the

kth root of unity, i.e.g* # 1, as we will show, for example, in Egs (2.7) and (2.8). This requirement
is justified by our need of consistency when we go to the standarddieaitL.
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with g =gt anduj = (%%)_ stands for the standard prime derivative. Note,

by the way, the important fact that we have to distinguish between the prime
derivativeu; = duy and the operator derivativiel, = (dux) + q¥uxd. [Eq. (2.3)].
To illustrate what it means, consider the following examples:

Example 1: uy(z) =2, k>0
For this choice of the field_x(z), we drive the following expression:

k—1
wM@=<2h)i% (2.4)
i=0

as we can easily check by proceeding with the first leading ters®, 1, 2,. ...
Indeed, fork = 0, (Up)’ (2) = 0 and fork = 1 we haveu_; = z, and by virtue of
Eqg. (2.1) we have

(U-1)'(2) = (Bu-_1) = du_1 — O "u_1d
=0z—q '20 (2.5)
=1,

which we can also derive from Eq. (2.4), wiffr* = g. The nontrivial case is
given byk = 2, such thati_, = z?; therefore we have

(U2)'(2) = (Bu_p) = 32" — G "u_5d
= (1+9)z+9°2% —q 2 (2.6)
= (1+09)z

which can also be easily seen from Eq. (2.4). These first leading cases clearly show
from where the prime derivative formula (2.4) comes from.

The total Leibnitz derivative applied to. x(z) = Z¥, k > 0, is simply derived using
successive action of the deformgdlerivatived = aq. We find

k—1
AZ¢ = (Z q‘) 71 4 g*Zo, (2.7)
i=0

which justify, in some sense, the consistency of Eq. (2.4) in describing the “con-
formal spin” content of the analytic fields(z). Settingk = 1, one recovers in a
natural way, the standard relation (2.1) just by setkirg 1. The second examples
we consider is the following:

Example2: w2 =z%k>1
Corresponding relations are computed in the same way. We find

k
Az M =— (Z al) z 4 qkz o, (2.8)
i=1
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which reduces to
0zt=—-qz?+qz% (2.9)
upon settindk = 1.
Now having introduced the ring of analyticq-deformed currents, and shown

how theq-deformed derivative acts, we are now in a position to introduce the space
of q-deformed (pseudo)-differential operators.

2.2. The Space ofj-deformed Lax Operators

Let E(: denote the space gfdeformed local differential operators, labeled
by three quantum numberns, r, ands defining respectively the conformal spin,
the lowest and the highest degrees. Typical elements of this space are given by

S
Lm=) uni(2d, rsmeZz (2.10)
i=r

The symbold stands for the-derivative anduy,_j (z) are analystic fields of con-
formal spintn — i). The spaceE(;¥ behaves then as a {Ls — r)-dimensional
space generated Wy = L, and whose space decomposition is given by the
linear sum

S
269 =P et (2.11)
i=r
with
B = Rn®9'. (2.12)
A special example of the spa@&"9 is given byRy, = E©9 [Eq. (2.2)], the set

of analytic fieldsum(z) introduced previously anél = 9|, is theith g-derivative.
A natural example of Eq. (2.10) is given by thedeformed Hill operator

Lo = 32 + uy(2), (2.13)

which will play an important role in the study of tliedeformed KdV equation
and the associated “conformaj*Liouville field theory.

A result concerning the algeb@&{";® is the derivation of the-Leibnitz rule
for local g-differential operators. Focusing to derive the general formula, let us
start first by examining the first leading orders. Iteration processing applied to
Eq. (2.3) gives the following relations:

IUk(2) = Ui (2) + Guk(2)d
32uk(2) = u(2) + (1 + QUL (2)d + §*uk(2)? (2.14)
Pu(@ = u/ @ + q*1L + g + Gu(2)d + G*(1 + G + G)u} (2)9°
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+%u(2)9°

The crucial point was the observation thalhese higher first-order derivations
formulas can be summarized into the following general Leibnitz rule:

0'u(2) = Y qP Myl@uP@9P, p=o0, (2.15a)
j=0

wherexg,(q) areq-coefficient functions that we have introduced such that

xo(@) = xp@=1 (2.15b)
and
-1 j-1-m
(@) =1+ Z ™ + g Z Z gt
ml—O my=

i=1 (1—1=my) (j—1—(m1+my))

+C_]3j q3m1+2mz+m3
m=0 my=0 m3=0
4+ ...
-1 j—1-m 112.”’1| .
+G(P i Z Z Z quj (p—j—=1-B)Mp 41 (2.15¢)
my= mp_j=0

forl < j < p— 1. Some remarks are in order:

1. From theg-Leibnitz rule (2.15a), one can deduce th@nalogue of the
standard binomial coefficien®), as follows:

Cp— P S(a) = G
P . P (2.16a)
Cl— xfla)=1
andforl>j>p—-1
cl 2 gte-ikyi(q) (2.16b)

2. Settingq = 1, the local Leibnitz rule (2.15a) reduces naturally to the
standard derivation law

p . H .
aPu(2) = Y CluP(@a*1, p=0, (2.17a)

5This observation was possible after performing several nontrivial algebraic manipulations toward
writing Egs. (2.14) in a compact form.
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giving rise to the following useful relations

xp)=Cp=1

(2.17b)
Xg(l) = Cpp =1
andforl<j<p-1
- - - i +1)
Cé:xg(1)=1+1+ 5
j—1 (j—1-my) (j—1—my—my)
DD DD DI
m=0 my=0 m3=0
-1 j-1-m, i-1-X0
Foed Y DT e Y1 (2170)
m;=0 my=0 Mp_j=0

3. Aswe can easily check, Eq. (2.15c¢) is a sunmpf( j + 1) objects starting
from the value 1 which corresponds to sgtt p) with zero summation.
In each term of the remainingp(— j) objects, we have a product af)(
summation) . 6> 1,—0" 2om—o With 1 < n < p— j. This structure
is useful in the standard limig = 1, recovering then the ?'(plicit form
[Eg. (2.17c)] of the well-known binomial coefficie@t), = (IR
Moreover, Eq. (2.10) which is well defined for local differential operators with
s >r > 0, may be extended by the negative integers (nonlocal ones) by introducing
g-deformed pseudo-differential operators of the t&@%, p > 1, whose action on
the fieldsuk(z) of conformal spirk € zis constrained to satisfy

P Pu(2) = 97 PoPuk(2) = uk(2). (2.18)

Following the same analysis developed previously, we derive the following
formulas:

a—luk(z) — i (_)| q(k(i-‘rl)-‘r@)us)(z)a_i_l
i=0

a_Zuk(z) = i(_)iq[k(HZHLy] (IZ qJ> UE)(Z)a_Z_i,
i=0 =0

93U (2) = i(_)iq[k(ws)#‘;—”] <2‘: i: qj1+jz) ug)8737i, (2.19)

i=0 j1=0 j2=0
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From these first leading formulas, we extract the following nonlocal Leibnitz rule:

[ee) i ii+1) i ji ip-2 i . . )
aipuk(z) = Z(—)Iq[ (i+p)+" :| Z Z - Z quzlJm us)(z)a*pfl
i=0 j1=0 j2=0 Jp-1=0
(2.20)
Here we also remark that, for a fixed value pt 1, we have ag-deformed
binomial coefficient given by a product gb (— 1) summatior -~ > o
Settingq = 1, one recovers the standard Leibnitz rule for nonlocal differential
operators, namely

Pu (@) =Y (-)Cl,,_ulaP (2.21)
i=0

for p > 1, with the identity relation

i ji jp—2

Clp1=2.> > 1 (2.22)

J1=0 j2=0 jp—l:O

coinciding exactly With)(ii+p_l(l) as we can easily learn from Eq. (2.17b). Other
important results are reported in Appendix A.

Up to now, we have introduced the rilRpf analytic functions and constructed
the space of arbitrarg-deformed Lax operators by deriving the generalized
g-Leibnitz rules. The next task is to see how we can apply the obtained results to
study some important features of nonlinear integrable systems and conformal sym-
metry. Special examples, namely the Liouville field theory and the KdV equation
as well as their extensions, will be considered.

3. GENERALIZED g-DEFORMED KdV HIERARCHY

In this section we propose to apply the results found previously to build
theg-analogues of the KdV-hierarchy systems. We will consider in particular the
first leading orders of this hierarchy, namely the KdV and Boussinesq integrable
systems.

Let us consider thg-deformed KdV Lax operator

Ly = 32+ Uy, (3.1)

which belongs to the coset spa:égg, for which we havealg = 1 andu; = 0. As
known from standard referenceg in nonlinear integrable models (Bakas, 1989a,b;
Das, 1989; Faddeev and Takhtajan, 1987, Jimbo and Miwa, 1990; Kupershmidt
1990; Lax 1968, 1975; Manin and Radul, 1985; Mathieu, 1988a,b; Smit, 1990;
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Yamagishi, 1988), we can set by analogy
Lo

otony1

= (Han11, Lz)q, (3.2)
which gives thenth evolution equation of thg-deformed KdV-hierarchy with
2n+1
H =(L,2 ) . 3.3
2n+1 ( 2 >+ (3.3)

The index 4" in Eq. (3.3) stands for the local part of the deformed pseudo-

2n+1

differential operatot,* defined as

1
L,? =L2ZLY. (3.4)

Lé/z is just the half power of thg-KdV Lax operator introduced in Eq. (3.1). It
describes g-deformed pseudo-differential operator of dimension % =1.The
nonlinearg-deformed pseudo-differential operaﬂloir'”l/2 is just the (& + 1)th
power ofLé/ 2. The standard method used to construct such kinds of operators can
be found in one of the references cited in [1]. To work out explidithy, 1 we first

need to computd';;/z. Using dimensional arguments we assume tti'z‘ﬁ takes

the following form:

L2 =9 +a(@)uzd " + b(a)usd 2 + (c(a)uy — d(@ud)d>+---,  (3.5)

where the first leading coefficier#s b, ¢, andd are required to satisfy

L= L;LJ. (3.6)
Using this requirement, we find explicitly
1
a(q) = 1+
b@) = -
W=t dar®
(@) = -
YT @y e )
qZ
D= erac G

Later on, we will introduce the dot on the analytic fields to describe the
derivation with respect to time coordinates while the prime derivative is already
introduced in Eqg. (2.3) to denote the derivation with respect to the space
variablez.
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Furthermore, the bracketintroduced in Eq. (3.2) is nothing bug-itieformed
commutator, which we define as

[fa", ga™, = g™ fa"ga™ — g"iga™ fo", (3.8)
where f andg are two arbitrary functions of conformal spih and §. Setting
n =0, Eq. (3.2) becomes

oL,

o [Hi, L2]g, (3.9)

1
whereH; = (L3)+ = 3. We also show that Eq. (3.9) corresponds simply to the
chiral wave equation

Up = U5, (3.10)
which means the equality of dimensiong [= [2]. Forn = 1, one has
8L2 %
zﬁg-_.[(L2>+i,L2]q, (3.11)

where 1_2%)+, explicitly given by

(L), 0%+ @ +a@)uad + 1+ ble)us, (3.12)

is theq-deformed Hamiltonian operator associated withghérasoro algebra.

Injecting this expression into Eg. (3.11) we can extract a nonlinear differential
equation giving the evolution of thggspin-2 currenti,, once some easy algebraic
manipulations are done. Indeed, identifying the r.h.s. and |.h.s. terms of Eq. (3.11),
we shall impose some terms of the r.h.s to vanish. We then obtain the following
differential equation:

Uz = A@@)uzU; + B(g)uz, (3.13)

where A(q) and B(q) are two constrainedj-dependent coefficients functions,
which can be determined. Simple computations then lead to

1+q+0*
A= e
-t (3.14)
B()__1+q+<32
V=@

This nonlinear differential equation is nothing but tpeleformed KdV system

a-L a? a - a2
U2=<1+q+q) Rk e MY

— 3.15
1+ 0?2 (3.15)

R
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which coincides in the classical limit with the well-known KdV integrable system
(Das, 1989)

3 / 3 "
U, = Euzu2 - Zuz , (3.16)
and associated to the Hamiltonian differential operator
3 3 3
(L3, =3+ 520 + Zu;. (3.17)

The same computations hold for thedeformed Boussinesq equation. For more
details concerning the results obtained for this system, we refer to Appendix B.
Note finally that the deformed KdV hierarchy discussed in this paper is based on the
structure of the algebra gfpseudo-differential operators as described previously.
Otherqg-deformation of this hierarchy are also possible; as an example we refer
the reader to Frankel (1996).

4. CONFORMAL TRANSFORMATIONS AND g-W CURRENTS

We start this section by presenting the conformal transformation of the spin-2
currentu,(Z) of theg-KdV hierarchy and give later the general relations for the
higher spin conformal currents (z), n > 2. We also discuss the primary condition
of the fieldsW,, n > 2, by using the Volterra gauge group transformations for the
g-covariant Lax operators.

4.1. g-Generalized Conformal Transformations
Let
Ly =82+ up (4.1)

be the Lax operator of thg-KdV hierarchy discussed in Section 3. Now we want
to show how the spin-2 conformal curremi(z) transforms under a conformal
transformation,

z— 2= 1(2). (4.2)
Under such a transformation, we assume thagtaeformed KdV Lax operator
(4.1) transforms as (Bakas, 1989a,b; Di-Francet@d., 1991; Manin and Radul,
1985; Mathieu, 1988a,b; Smit, 1990; Yamagishi, 1988)
Lo(u(2) — La(la(2)) = ¥~ 2 La(ua(2)y 2, (4.3)

wherey = g—§ The choice of’-powers in Eq. (4.3) is dictated by the fact that
L2(u(2)) maps densities of degree £) to densities of degreg+3). We have

d— 3 =1yd, (4.4)
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which imply
32 = Yy'9 + 202 (4.5)

Using straightforward computations, we find

1 1 1_

Viloyd = 2% + S+ @YY + YU+ 5 (w”vf - Eq(w’)z) . (4.6)

from which we can easily derive the following result:

. ~ q—1 ,~ .

Lo(02) = 9%+ qu 3 + Uy 4.7
This clearly shows how the conformal transformation violates the standard con-
variantization property in the case gfLax operators. However, fay = 1, we
recover this property naturally, since the coefficient teriofEq. (4.7) vanishes
as is proportional té;?.

Using the identification Eq. (4.7), we obtain the following conformal trans-

formation for the fieldu,(2):

W@ = ¥ 75:0) - 55 ), @8)

where we denote bﬁ?(q, ) the g-Shwarzian derivative associated with the
currentu, and defined as

2 ) = ¥V %(K’)Z
K@ ="--30) (4.9)
The upper index “(2)” irﬁé) stands for the order of thepKdV hierarchy.

Furthermore, Eq. (4.8) shows thai(z) transforms, as a field of conformal
spin 2, up to an anomalous tel®w?)(q, v) exactly like the energy—momentum
tensor of two-dimensional conformal fields theories.

The second example we consider is th8oussinesq hierarchy associated
with theg-deformed Lax operator

L3(Uz, Uz) = 8% + Upd + U3. (4.10)
Similarly, the conformal transformation (4.2) implies in this case
L3(up, Us) — La(liz, U3) = ¥2L3(ug, uz)y, (4.11)

leading to the following result:
Vilay = ¥20° + 1+ + @)Yy 92 + {(L+ G+ q)yy”
+U2¥ 10 + ugy® + upy Py Py, (4.12)
with
La(@, bz) = 3% + (92 — 1)y'92 + ipd + Qs. (4.13)
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Using again the identification (4.11), we obtain the following results:
Uz = ¥ 2z + S, ¥)(@)

Us = %005 — %ﬁz + 59, ¥)(b). (4.14)

where S and §2 are theg-Shwarzian derivatives associated respectively with
the conformali, andus. They are given by

I/f/

2
L@, v) = @ (J) _G@+1)

L@, v) = "”7 + %sﬁ?(q, ).

I/f_//
v (4.15)

Note by the way thaf{®) andS) are shown to relate as follows:

I +q@+ns =0 (4.16)

As suspected fog = 1, one can find the standard formulas given by (Bakas,
1989a,b; Di-Francescet al., 1991; Manin and Radul, 1985; Mathieu, 1988a,b;
Smit, 1990; Yamagishi, 1988)

uz = ¥ 20 — P, v)

, (4.17)
Uz = ¢ 3l — Klj2 - %2)(11 ¥),
Y3
with
N\ 2 /"
= (1) -2
Wlf v v (4.18)
3) 1' — 7 a3) 1, ,
. v) ot wSéz( v)
and
I +250 =o0. (4.19)

The presence of the anomalous term in Eq. (4.14b) can be removed by a convenient
basis choice, namely the primary basis, which we will discuss later on.
Having given explicitly the conformal transformation of the currantand
uz of conformal spin 2 and 3 respectively, we now focus to generalize these results
to higher conformal spin currentg(z),n =2, 3....
Let
n—2 .
Lafu] = 8"+ ) " Up_10' (4.20)
i=0
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be the higher order Lax operator involving{ 1) conformal currents withp = 1
andu; = 0 and wheré = 34. Under the conformal transformation (4.2), this Lax
operator is assumed to transform as

La[u] = Lall] = ¢ La[u]y 7. (4.21)

Similar to the previous study, the structure of the Lax operhatu] [Eq. (4.20)]
is broken under the conformal transformation. We find in general

n-2
Call] = 9"+ Ay/9" 1 + ) "1, (4.22)
whereA is an arbitrary Lorentz scalar function which we will precise.

To determinel ,, we need to compute explicitiy". Starting from Eq. (4.4)
and using simply algebraic manipulation, we find the following results:

= Xn: MP', (4.23)
i=1

whereM;" are functions of conformal spim(- i), which we can summarize as
follows:

Mg = "
M] = yamp (4.24)
MM = y[MIq0 D 4 aMM Y], 2<i<n—1
Substituting these relations into Eq. (4.22) we find
= Xn: Xi (A, M, )"t (4.25)
i=0
where

Xi(A M, ) ="M (4.26)
j=0

On the other hand, simply performing algebraic calculations show that the r.h.s.
of Eq. (4.21) lead to

an[u]w”f:wTZ(Zui_j (@ (v f))B”i. (4.27)
i=0 \j=0

Identifying then Eq. (4.25) with Eq. (4.27) we find

1-n ,
A@ ) =" [x%(q)w"T” (v'7) - Mﬁl}- (4.28)
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with

7
N

X (@)

Il
L

I
o

(4.29)

x

S
I

Lo

xr?=

and

u = ! +Z[u My~ J— T JXn |+J(Q)( n+l)(j)]}

forO<i <n. (4.30)

We then clearly show how to transform the conformal currents > 2, under
Eqg. (4.2). The first thing we learn from these results is the dependence on the
g-parameter, which once coincides wigh= 1 leads to the standard formulas.
To illustrate the obtained results, we consider two particular examples discussed
previously, namely thg-KdV andqg-Boussinesq integrable models described re-
spectively byl »(u) andLz(u).

The former is easily obtained by setting= 2 into Eqgs. (4.28)—(4.30), which
recover Egs. (4.8) and (4.9) exactly with

A=< (4.31)

Similarly, Egs. (4.14) and (4.15) are obtained by setting 3 Egs. (4.27) and
(4.28) with

A=qg>—1 (4.32)

4.2. Volterra Gauge Group Transformation and g—W Currents

In the framework to generalise the conformal transformations togthe
deformed case, we found, in addition to new features, the presence of anoma-
lous terms at the level of the conformal curregfu,, ..., u, [Eqg. (3.30)].

Our idea is to consider a Volterra gauge group transformation associated to an
“orbit” in which no such anomalous terms can appear. We start first by recalling the
Volterra gauge group symmetry. This is a symmetry group whose typical elements
are given by the Lorentz scalgrpseudo-differential operators (Rachidi, xxxx)

Kla] =1+ ) a(2, (4.33)
i>1

where a;(z) are arbitrary analytic functions of conformal spir=1, 2, 3,....
These functions, to which we shall refer hereafter to as the \olterra gauge
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parameters, can be expressed in terms of the residue operation as
a(2) = Redk@? ™) (4.34a)
where
Red =610, (4.34b)
and for a given functiorf (z), we recall that we have Eq. (2.3):
@) =f@+q f(20. (4.35)

Next, we will apply this Volterra gauge group symmetry to the algebmg-béx
operators (4.20) via the following relation:

Ln(u) = La(w) = K 1@Ln(u)K(a), (4.36)

whereL,(w) is the transform of.,(u) under the Volterra group action with =
w(a, u) is a function which depends on the Volterra paramaitand theu-fields.
Moreover, Eq. (4.36) shows that tlhiecurrents may be expressed completely in
terms of the \olterra gauge parametersand theirkth derivatives. However,
solving Eq. (4.36), one finds that the new fields are polynomials in the old
u-fields and the Volterra parameters and their derivatives.

Making the appropriate choices of the Volterra parameters dictated by the
primary condition, thew-fields can then be expressed in terms of thiéelds
exactly as do the primamy-currents which satisfy (Di-Francesebal, 1991)

Ws(2) = ¥ Ws(2). (4.37)

To illustrate how things work, let us focus on solving Eq. (4.36) for the special
casen = 3. We have

La(u) = 8 + U9 + U3 (4.38)

describing the Lax operator of tlieBoussinesq integrable system. Applying the
\olterra gauge group symmetry Eqs. (4.36)—(4.38), by identifying

K(a)Lz(w) = Lz(u)K(a), (4.39)

we find, after straightforward algebraic calculations, the following formulas for
the first parametera,, ay, ag, a4:

5331 =a
8+ Wz = Uz + Q% + (L + 0+ )
ag +Ws + q%aqW, = Uz + q°as + qaguz + 0*(1+ g + qa,
+0(1+q+ g%
as + qPaws — gPayw;, + q*aws = agus + g%aus + qtlay + q3(1+q
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+0%)ay + a°(1+q + g°)a

+aja;uy. (4.40)
We also show that the remaining Volterra paramedgrg > 2, are constrained to
satisfy

a)49(G0+9 — 1):al(_1)j_1q31+j('7) Wi 4 ay(~1)'q 2(J+1)+J(%)Wéi)

k] i-2
i+1 j- l 1 i
Lo o
k=0  Kj_1=0
oo i Kj—i—
|+1 j- ' 1k i
+ Zaj 1q2(1+1)+| ) Z Z qz Wg)
i=0 ki=0 kj_i=0

—q A+ q+09a,, - q U — &)’
— 201+ g+ gHaj,, — aju, — ajus, . (4.41)

Consequently, we learn from Eq. (4.40) that the spin-1 \Volterra gauge parameter
a; vanishes naturally for arbitrary values of the paramgtérhis leads to set

a =0 (4.423)
(1-q%az = uz — W, (4.42D)
(1-q%as = us — w3 + q*(1 + q + 39)a, (4.42¢)
@ — Das = q*aws — G2(1+ G + 59)a;

— %1+ g+ 99)a; — (a; + ga)uz, (4.42d)

with the constrains (4.41). Note that whgnr= 1, one recovers from Egs. (4.42), a
Volterra gauge orbiKy—1{a;} in which thew; -fields are seen as primary currents
(Rachidi, xxxx).

Actually, our principal task is to make an appropriate choice of the Volterra pa-
rametersy; such thatv; become primary conformal currents satisfying Eq. (4.37).
Recall also that in the classical limit the analytic fielg behaves as a spin-2
field of 2D conformal field theory, coinciding with the, current. Similarly, in
the deformed case we can requivg to be proportional tai,, which leads from
Eq. (4.42b) to set

a, = dUy, (443)
wheres is an arbitrary constant for the moment. We then have

Wy = Up(1 — 8(1— qP)). (4.44)
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Substituting Eq. (4.43) into Eq. (4.42c), we obtain
ag = P1Us + Baus, (4.45)

wherepB; andg; are, for instance, arbitrary constants which can be fixed.
The resulting expression for tlyedeformedw-current of spin 3 is

W3 = Ug[1 + (q° — DB + UL q* A+ T+ G2 + B2(0° — 1)),  (4.46)

with the constraints equation (4.41) giving the remaining Volterra parameters
aj, >5.

a(@® — 1) = q*aws — %1+ q + 0%)a,
—0°(1+q+g9)as — (8] + gPar)uz

) 3 . i Kj—i—2 . .
i=0

k;=0 kj,i,lzo

3 ) i Kj—i-1 ) _
+ ) a2 [ S0 3 gk | wd)
i=0 k=0 k=0
— q_]+l(1 + q_+ q_z)a}/_;'_]_ _ qj+laj+1U2 _ a}//

— g4 g+ az)a] 42— & Uz — ajus. (4.47)

Now, let us consider a conformal transformation of the spimaurrent
[Eq. (4.46)]:

Ws = W3 + Vs, (4.48)
whereys is a function of conformal spin 3 given by
ys = 29 {1+ 20% (1 + G+ 698 + (@ — 1)B1 + 2@° — D)B2Jue
+y° { <Sﬁ"§) - %%ﬁ’) - (2%3@ + asﬁ?) T'QL—q+d)s
+@- (- L) a-@ -0 (2501050 5.

Imposing the primary condition (4.37) implies the vanishingofrom which one
can derive a solution for the constaits|), 81(q), and82(q) which are required
to coincide in the classical limit witl$(1) = —1/6, B1(1) = 0, andB,(1) = 1/6
respectively.
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5. NOTE ON THE su(n)-TODA FIELD THEORY CONSTRUCTION

In we this section we set up some crucial ingredients toward building-the
deformed analogue of 2D )¢ Toda like conformal field theory, using the previous
analysis. The starting point consists in exploiting the correspondence which exists
between the second Hamiltonian structure of integrable systems and the Virasoro
conformal algebra which is the symmetry of 2D Liouville field theory.

Consider then the integrablg-KdV equation discussed previously in
Section 3 and which we can conveniently take as follows (see Eg. (3.15)):

1+cT+cT“> ;140462 ,
U= ———— - uy. 5.1
? ( 1+@ )22 @+1 2 1)

Applying the Miura transformation (which connects the dynamical curgwith
the scalar fieldp = ¢(z, Z) to theg-deformed KdV Lax operator as follows:

L= (8% +up) = (0 + A + B), (5.2)
whereA andB are spin-1 fields, which are constrained to satisfy
A=—qf
{ AB+ B’ = up, (5.3)
with B’ = (9 B). A solution to this system is
A= —0¢
{ B = qo¢, (5.4)
which gives
Uz = (8% — (3¢)°). (5.5)

This equation shows that is aq-deformed spin-2 current, which behaves like
the stress-energy—momentum tensor of 2D Liouville conformal field theory. An
important point is to look for the Lagrangian of this theory. Using the standard
knowledge on conformal Liouville field theory (Alvarez-Gaearid Gomez, 1991;
Mansfield, 1982, 1983; Olive and Turok, 1986; Saidi and Sedra, 1993, 1994b,c;
Sedra, 1998), we can set by analogy

b

where the coefficient numbéris shown to take the value= (1 + q) (see Ap-
pendix D). We also show that the equation of motion which emerges from this
action is nothing but thg-deformed 2D conformal Liouville equation given by

ddp —2q D — 0 (@ =qb. (5.7)

To obtain this equation, one must precise, as explicitly shown in Appendices C and
D, that the Euler-Lagrange equations should be applied taking into account the

Sl = [ a2 {3<p5¢ ;2 exp(mp)} , (5.6)
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previous analysis. The-deformed form of the conserved current can be written
as

T(p) = 99%p — q(d¢)?, (5.8)
whose conservation is assured by the equation of motion (5.7),
aT(¢) = 0. (5.9)

Note that this conservation law combined with Eq. (5.7) fixesgtmefficient
numberb = (1 + q) in the exponential Equation (5.6). Before closing this discus-
sion some remarks are in order.

First note that the action (5.6) is conformally invariant and generalizes nat-
urally the su(2) standard Liouville theory. As already known from the standard
studies, the coefficient number in the exponential Liouville potential is closely
connected with the Cartan matrix of some simple Lie algebra. An important task
is to look for the interpretation of the coefficienf { 1), appearing in our expo-
nential, from the Lie algebraic point of view. Recall that this number coincides in
the classical limit case with the number 2, which is nothing but the Cartan matrix
of the su(2) Lie algebra.

However, the choice of oug-KdV Lax operator in Eq. (5.2) shows already
the existence of an su(2) symmetry, which can also be recovered from the Liouville
action. Indeed, if we redefine the scalar fieltb be

q+1
R (5.10)
2
we can easily read the su(2) symmetry from the Liouville action. The latter becomes
— 2
@] = [ d?z120Pdp + —— ex } 5.11
S0l = [ iz {o0dp + 2 o) (5.1)
upon introducing a parametdr, namely
= (%) . (5.12)

Theq-deformed Liouville equation of motion becomes
30d — q(@ + 1) exp(2b) = 0. (5.13)

We can also think to generalize the abovdeformed su(2)-Liouville field theory
to the su(n) conformal Toda field theory. We set for the moment

_ n-1
Su(n) - Toda= f 8%z (a¢a¢ + n(q)Zexp@eias)) . (5.19)
i=1



Algebra of q-Deformed Pseudo-differential Operators 2359

where¢ = Z'j‘;iong_,- ande; are the simple root of the suLie algebra whose
Cartan matrix is defined as

Kij = aiaj, (5.15)

and wherey(q) is a function of the parametgrwhich can easily be fixed, given the
corresponding model in the generalized KdV hierarchy. More orgtuieformed
Toda field theory construction may be a subject of future works.

6. CONCLUSION

We tried in this work to understand the behavior of 2D nonlinear integrable
systems in thg-deformed case. For this reason, we started by generalizing some
well-known results in the theory of formal pseudo-differential operators to the
g-deformed case. The obtained results are applied to builg-trealogues of the
generalized integrabbpKdV hierarchies whose first leading orders areghiédV
andg-Boussinesq systems. We derived the dynamical equations of these deformed
integrable hierarchies, leading in fact to the standard ones, oncgpgheameter
is fixed to be 1. We discussed how to transform in the deformed case the currents
u;(2) under a conformal transformation. The results obtained showed a nontrivial
behavior of these currents, which coincides naturally with the standard results upon
settingg = 1. We discussed also the primary condition of these currents using the
Volterra gauge group symmetry. In the last part of this work, devoted to the Toda
field theory construction, we presented thanalogue of the su(2) Liouville and
su() Toda conformal field theories. Other algebraic properties are reported in the
appendices.

APPENDIX A

Let f (2) be an arbitrary analytic function of conformal spirf = f. Using
Eg. (2.3) and the iterative action of tqedeformed derivative, we find

8fn(z):(1+alf~+afzf~+”.a(nfl)f)f/fnfl_kqfnffna, (A1)

wheren is a positive integer number. Setting= 1 one recovers, once again, the
ordinary derivation rule

af"(2) = nf' "1 4 5. (A2)
A special choice off (z) in Eq. (A1) is given byf (2) = zwith Z = —1,

0" =1+ q+0°+-- +q" 2" +q"2", (A3)
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which reduces to Eq. (2.1) upon setting= 1. For negative integer numbers we
easily find

"D =—@ +a2 + -+ E T, (Ad)
which becomes, upon settilgg= 1,
af "(2) = —nf £ 14 £7Np, (A5)

As before, setting (z) = z we obtain
3z "= @+ + - +q)z "+ gz ", (A6)

Furthermore, we note that for half integer powersf¢) we can obtain general
formulas. The method to do this starts from setting

a2 = a(q) f' £ 712+ B(a) /%0, (A7)

wherex(q) andg(q) are two arbitrary-dependent functions that we can determine
explicitly by the following trivial property:

A(fFY2£Y2) = (). (A8)

General formulas are given by

2n+1

(1-{-6;4-@2?{4_..._4_6%"{)

2n+1 —(n+1)f _ (2n+1)

af 2 (2 = — f'f2 +q 2 f 29, (A9)
(1+q92)
and
Tfof af o af @nsn)f
ot —q2<q2 +9z4+Q9z---+q : ) ey if  —onad)
8f2(z)= — ff2+quz
(1+q92)
(A10)

Theseg-generalized results are important in discussingottieeformed Lax evo-
lution equations and the covariantizationgpilifferential Lax operators.

Before closing this appendix, note that the riRy= ®y,R« defined in
Eq. (2.2) is a commutative ring, which means that for eaglz) andu;(z) be-
longing to R we haveu(2)u; (2) = u; (2)ux(2). However, applying the-Leibnitz
rule (2.3), one can easily show the existence of a noncommutative structure in the
spaceg("-9 of local and nonlocatj-differential operators. Indeed, létandg be
two arbitrary functions of conformal spifi andg, with fg = gf,

(@f)g= f'g+q'fg +a 9 fgs, (A11)
while

0g)f =g f +qdgf +q*+9gfa, (A12)
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which clearly shows thatf)g # (3g) f for f = §. Note that this noncommuta-
tivity property of f andg, with respect to the action of thederivativedy, arises
naturally from Eq. (2.3). Note also the important fact that when the fungjion
is, for example, thath power of the functionf with n € R, one can segg = "
which yieldsg = nf and then

(0f)g = (99) f, (A13)

with f/f" = f"f’. One can then deduce that the two subspdtesnd Ry of

analytic functionsf (z) andg(z) of conformal spinf andd, respectively, do not
commute under the action of tliederivativedy unless if there exists a relative
integern € Z, such thag = f".

APPENDIX B
g-Deformed Boussinesq Equation

Using the same technique developed for thdeformed KdV system, we
present in this appendixggeneralization of the Boussinesq integrable hierarchy
(for a review, see Das, 1989).

Let

Lz=0%+Uz9 +us (B1)

be the Lax operator associated with th@&oussinesq hierarchy, wheug andus
are two currents of conformal spin 2 and 3, respectively. Knowing tHAt¢@ = L3

and the fact thaté/?’ is an object of conformal spin 1, we can set

Lé =94 audt+ (buz —cup)d 2+ (duy —ews — fup)d3+..., (B2)
where the coefficients, b, ¢, d, e, and f are given explicitly by
A 1
142+t
be L
1+a3+0q°
o 1+9°+¢q°
A+ P+ + P+ )
d— 1 {(1+62+63)(1+63+6“)_1} (83)
@+ +g)A+ 0 + ) 1+ +0°
14+9°+0°

= ——7F7———
(1+0*+9%?
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q°
so that
(L37), = (B4)
Identifying the r.h.s. and I.h.s. of the following equation:
dlLs i
;ﬁ;‘==[(L3)+’L3]q’ (BS)
we obtain
u, = Up
Ué = Ug, (B6)

which give the chiral wave equations for the Boussinesq hierarchy.
Similarly, the identification

(L), L), &)

with
<L§)+ — 0% 4 a(@ + L)y (B8)

gives
Uz = U + a(l+ q3){af, + Bu,u, } (B9a)
U= uj{l +o25(1+ A+ G + G} + G3(1 + q)uj (BOb)
q°uz = (L+ {1+ aZ5(1+ g)}uy, (B9c)

wherea and g are two arbitrary functions of the parametgrwhich can be
conveniently fixed in such away that= 8 = —1 in the classical limit. Combining
(B9a) and (B9c) we find

Uz = —Q%(1+ g + aeq(d + g)uy’ + as(L + g?)uyu). (B10)
Moreover, note that (B9c) can be written as
—-q°
Uz = , B11
T @+ )1+ a1+ P) (B11)

which implies by virtue of (B9b) that
up = B(q, or)usj, (B12)
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with
B(, ) =q°(1+Q) A+ Q)1+ acP(L+ P)

Equations (B10) and (B12) then give thaeleformed Boussinegequations. Set-
ting g = 1 we recover the classical Boussineq equation, namely (Das, 1989)

(B13)

7 /
; 4 1 2 !
Uz = —éu3 - §uguz. (B14)

Next we will show how theg-deformed Boussinesq equations (B10) and (B12) can
be cast into a simple form. Indeed using straightforward algebraic computations,
(B10) and (B12) simply become

X
i, = B(q, cx){xtuz 1+252 u%} (B15)
where
X1 = —0%(1 + q + axq(1 + G?))

= ag(1+q?). (B16)
Forqg = 1 we recover the standard Boussinesq equation, namely

U = 2uy” + ;(ug)” (B17)

APPENDIX C
g-Deformed Exponential

The exponential function exp) is also shown to take g-deformed form.
Indeed, from Eg. (2.7) we can extract the following prime derivative:

n-1
(@Y = (92" = (Zq‘)z“-l, (1)
i=0
and write the exponential exg)(as follows:
exp@) = Z (C2)
JWETE

where we define thg-deformed factorial numbers as follows:

Nlg! =1@+1).@*+g+1)--- @ 1 +g"2+---+q+1) (C3)
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With this definition, we clearly see, from Eqgs. (C1) and (C2) that

0 exp@) = exp(), (C4)
with the observation that
g o [l (cs)
i=0 [(n - 1)]q

Note that one can generalize these definitions of the exponential for an arbitrary
function f (z) of conformal spinf by exploiting the results established before.

APPENDIX D
Variational Principle and g-Deformed Euler-Lagrange Equations

Consider they-deformed Liouville action which we can write as

S0l = [ dzfavi + § expbo)], o)

wherea andb are g-dependent coefficients which can be determined using di-
mensional arguments and conservation of the induced conserved current. The
variational principle applied to thg-Liouville action Sreads as

§9Y¢] =0« /dz {—q)&p + %‘)a(aw)} (D2)

where the Largrangian is given by= d¢d¢ + 5 Z expby) with d = 34 and where
the variatiors is required to satisfyd], 9] = 0, which means thé&ts = §3. Using
these remarks and the fact that (by virtue of Eq. (2.3))

oL aL ' aL aL
$(505%) = (5655) = (5055) %0+ 35700 @3
<8(8¢) 3(0¢) 3(0¢) 3(09)
wherex is the conformal dimension og—gf) we obtain the followingj-deformed
Euler—Lagrange equation
oL < oL
- — q - =
dg 3(0¢)
fortheg-Liouville Lagrangian density = agoagp + 5 2 exp(y). Performing simple
algebraic computations, we find (see Appendix C)

(D4)

E — g_aebw — Zeb¢
dp b dp
oL =
——— =0d¢ (D5)
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from which we easily derive the following-deformed Liouville equation of
motion:

26" — q*99¢ = 0. (D6)

On the other hand, using dimensional arguments, we remarktaal as the
conformal dimension of the Lagrangian lis= 2. To determine the coefficient
constanb we use the conservation of thedeformed current (5.8), namely

T(¢) = 90%p — q(d¢)*. (D7)
We have
0= 9T (¢) = 4d(3d¢) — 4d(3¢)*, (D8)
which fixes the value of the coefficieht namelyb = (1 + q) with = 0 and
3(3¢) = (1 + @)apddy, (D9)
as shown in previous computations. Finally, we have
ddp — 2D =0 (@ =qY). (D10)

Settingq = 1 one recovers the well-known Liouville equati6§<p = 2e* asso-
ciated to the Liouville Lagrangiah = d¢d¢ + exp(2p).

APPENDIX E
g-Deformed Commutator and Compatibility Condition

The use of thg-deformed commutator (3.8) instead of the usual one, namely
[L, B] = LB — BL which is nothing but they = 1 limit of Eq. (3.8), implies a
nontrivial consideration of the Lax evolution equation (3.2) in terms of the two
compatibility equations. To be more precise let us recall how these equations give
rise to the standard evolution Lax equation @@oe 1) for arbitrary Lax pail_, B.
The compatibility equations are given by the following system of linear equations:

LY = A0
I

By = (E1)
at

We have

AV AV LW
BLV =BAWW = BYV=p— = — = —, (E2)
ot ot ot

which also gives

aLv oL v  aL
=—V+L—=—V+ LB E3
ot at + ot ot + E3)
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We then have
aL oL
[B, L]\If:(BL—LB)\IJ:E\IJ@[B, L]=§. (E4)

In the g-deformed case, the situation is not trivial, since the commutator is in-
dispensable to ensure this compatibilitygsdeformed. In fact, let us consider
for simplicity theg-differential Lax pairsL, andHan1 = (L5""*/%), required to

satisfy by analogy the Lax evolution equation (3.2)
oL,
Otont1

where they-deformed commutator is defined in Eq. (3.8). As suspected, by simply
performing algebraic computations, we obtain

= [Hany1, L2lg, (ES)

[H1, Laolq = Hilo — @PLoHy + (@ — 1)9° + - - (E6a)
[Hs, Lalq = Hala — q°LoHs + (q° — 1)9° + - -- (E6b)
[Hs, Lolq = HsL2 — q*°LoHs + (@™ — 1)9" + - -- (E6c)
[H7, Lolq = Holo — G%LoH7 + (@ — 1)9° + - - (E6d)

results, which can be generalized for arbitrary omlef the g-KdV hierarchy as
follows:

[Hani1, Lolg = Hansalo — @@L Hon g + (2@ — 1)9203 4 ...
(E6e)
The terms @@+ — 1)323 4 ...) in (E.6) are extra nonlineag-differential
operators proportional tay(— 1). These extra terms vanish in the standard limit
g = 1to give rise to the standard commutator (E.4)

[Hont1, L2]g=1 = Hony1l2 — LoHonys. (E7)

The important remark at this level is that if the compatibility equations exist they
must be highly nonlinear with a dependencejias they should take into account
the presence of the nonlinear extra terms ingkdeformed commutators (E.6).
The possibility to write the two compatibility linear equations can emerge naturally
as ag = 1 limit of the previous equations.
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