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We build in this paper the algebra ofq-deformed pseudo-differential operators, shown
to be an essential step toward setting aq-deformed integrability program. In fact, us-
ing the results of thisq-deformed algebra, we derive theq-analogues of the gener-
alized KdV hierarchy. We focus in particular on the first leading orders of thisq-
deformed hierarchy, namely theq-KdV andq-Boussinesq integrable systems. We also
present theq-generalization of the conformal transformations of the currentsun, n ≥
2, and discuss the primary condition of the fieldsWn, n ≥ 2, by using the Volterra
gauge group transformations for theq-covariant Lax operators. An induced su(n)-
Toda(su(2)-Liouville) field theory construction is discussed and other important features
are presented.
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1. INTRODUCTION

An interesting subject which has recently been studied from different point
of views deals with the field of nonlinear integrable systems and their various
higher and lower spin extensions (Bakas, 1989a,b; Bouwknegt and Schoutens,
1992; Das, 1987, Faddeev and Takhtajan, 1987; Fateev and Zamolodchikov, 1988;
Jimbo and Miwa, 1990; Kupershmidt, 1990; Lax, 1968, 1975; Manin and Radul,
1985; Mathieu, 1988a,b; Saidiet al., 1995a,b; Smit, 1990; Yamagishi, 1988;
Zamolodchikov, 1985). These are exactly solvable models exhibiting a very rich
structure in lower dimensions and are involved in many are as of mathematical
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physics. One recalls, for instance, the two-dimensional Toda (Liouville) fields theo-
ries (Alvarez-Gaum´e and Gomez, 1991; Bakas, 1989a,b; Manin and Radul, 1985;
Mansfield, 1982, 1983; Mathieu, 1988a,b; Olive and Turok, 1986; Smit, 1990;
Yamagishi, 1988) and the KdV and KP hierarchy models (Bakas, 1989a,b; Das,
1989; Faddeev and Takhtajan, 1987; Jimbo and Miwa, 1990; Kupershmidt,
1990; Lax, 1968, 1975; Manin and Radul, 1985; Mathieu, 1988a,b; Smit,
1990; Yamagishi, 1988), both in the bosonic as well as in the supersymmetric
case.

Nonlinear integrable models are associated to systems of nonlinear differen-
tial equations, which we can solve exactly. Mathamatically these models have be-
come more fascinating by the introduction of some new concepts such as the infinite
dimensional Lie (super) algebras (Cornwell, 1989; Humphreys, 1972; Kac, 1977),
Kac-Moody algebras (Xian, 1991), W-algebras (Bouwknegt and Schoutens, 1992;
Fateev and Zamolodchikov, 1988; Saidiet al., 1995a,b; Zamolodchikov, 1985),
quantum groups (Benkaddouret al., 1998; Drinfeld, 1987; Faddeev, 1984; Jimbo,
1985, 1986; Wess and Zumino, 1990), and the theory of formal pseudo-differential
operators (Bakas, 1989a,b; Das, 1989; Faddeev and Takhtajan, 1987; Jimbo and
Miwa, 1990; Kupershmidt, 1990; Lax, 1968, 1975; Manin and Radul, 1985;
Mathieu, 1988a,b; Saidi and Sedra, 1994a; Sedra, 1996; Smit, 1990; Yamagishi,
1988). Note, by the way, that techniques developed for the analysis of nonlinear
integrable systems and quantum groups can be used to understand many features
appearing in various problems of theoretical physics (Benkaddour and Saidi, 1999;
Maroufi et al., submitted; Saidiet al., 1995a,b; Saidi and Sedra, 1993, 1994b,c;
Sedra, 1998).

Recall that, since symmetries play an important role in physics, the principal
task of quantum groups consists in extending these standard symmetries to the
deformed ones, which might be used in physics as well.

Motivated by the relevance of both the generalized integrable KdV hierar-
chies and quantum deformations, we focus in this work to present a systematic
study of bidimensionalq-deformed nonlinear integrable models. We start then
in Section 2 by presenting the algebra ofq-deformed pseudo-differential op-
erators. This provides the basic ingredients, which we need in theq-deformed
integrability framework. Using these backgrounds, we will build, in Section 3,
the q-analogues of the generalised KdV hierarchy. We will concentrate in par-
ticular on the first leading orders of this hierarchy, namely theq-KdV and q-
Boussinesq integrable systems. In Section 4, we present theq-generalization
of the conformal transformations of the currentsun,≥ 2, and discuss the pri-
mary condition of the fieldsWn, n ≥ 2, by using the Volterra gauge group trans-
formations for theq-convariant Lax operators. An induced su(n)-Toda(su(2)-
Liouville) field theory construction is presented in Section 5. Other important
results and some useful formulas are reported in Appendices A–E. Finally, we give
conclusions.
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2. THE ALGEBRA OF q-DEFORMED PSEUDO-DIFFERENTIAL
OPERATORS

We start in this section from the well-knownq-deformed derivation law,
∂z = 1+ qz∂ (Benkaddouret al., 1998; Drinfeld, 1987; Faddeev, 1984; Jimbo,
1985, 1986; Wess and Zumino, 1990) and derive theq-analogue of the Leibnitz
rule for both local and nonlocal differential operators. This result, which gives
naturally the algebra ofq-deformed (pseudo)-differential operators, will provide
a way for generating a hierarchy ofq-deformed Lax evolution equations.

2.1. The Ring ofq-“Analytic” Currents

To start let us precise that the deformation parameterq we consider in this
study is assumed to be a nonvanishing positive number.4 Consider then the follow-
ingq-deformed derivation rule (Benkaddouret al., 1998; Drinfeld, 1987; Faddeev,
1984; Jimbo, 1985, 1986; Wess and Zumino, 1990):

∂z= 1+ qz∂, (2.1)

where the symbol∂ stands for theq-derivative∂q ≡ ∂q =
(
∂
∂z

)
q.

As we already know, “conserved” currents are ingredients that we highly
need in the programs of nonlinear integrable models and two-dimensional con-
formal field theory building. As we are interested in the present study to set up
the basic tools toward extending such programs toq-analogue ones, we will try
to describe first the ring of arbitraryq-“analytic” fields which we denote byR.
Following the analysis developed in Saidi and Sedra (1994a) and Sedra (1996),
this space describes a tensor algebra of fields of arbitrary conformal spin. This is a
completely reducible infinite dimensional SO(2) Lorentz representation (module)
that can be decomposed as

R= ⊕
k∈zR(0,0)

k , (2.2)

whereR(0,0)
k = Rk are one-dimensional spink-irreducible modules generated

by theq-“analytic” fieldsuk(z) of “conformal” spink ∈ z. The upper indices (0,0)
carried byR, and that we shall drop whenever no confusion can arise, are special
values of general indices (r, s) introduced in Saidi and Sedra (1994a) and Sedra
(1996) and referring to the lowest and highest degrees of some pseudo-differential
operators.

Inspring from the derivation law Eq. (2.1), we introduce in this ring a
q-deformed derivative∂ ≡ ∂q satisfying

∂uk(z) = u′k(z)+ q̄kuk(z)∂, (2.3)

4 This means thatq ∈ R∗. However, if we suppose thatq ∈C, then we shall imposeq to differ from the
kth root of unity, i.e.,qk 6= 1, as we will show, for example, in Eqs (2.7) and (2.8). This requirement
is justified by our need of consistency when we go to the standard limitq = 1.
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with q̄ = q−1 and u′k =
(
∂uk
∂z

)
q stands for the standard prime derivative. Note,

by the way, the important fact that we have to distinguish between the prime
derivativeu′k = ∂uk and the operator derivative∂uk = (∂uk)+ q̄kuk∂. [Eq. (2.3)].
To illustrate what it means, consider the following examples:

Example 1: u−k(z) = zk, k ≥ 0
For this choice of the fieldu−k(z), we drive the following expression:

(u−k)(z) =
(

k−1∑
i=0

qi

)
zk−1, (2.4)

as we can easily check by proceeding with the first leading termsk = 0, 1, 2,. . . .
Indeed, fork = 0, (u0)′ (z) = 0 and fork = 1 we haveu−1 ≡ z, and by virtue of
Eq. (2.1) we have

(u−1)′(z) ≡ (∂u−1) = ∂u−1− q̄−1u−1∂

= ∂z− q̄−1z∂ (2.5)

= 1,

which we can also derive from Eq. (2.4), with̄q−1 = q. The nontrivial case is
given byk = 2, such thatu−2 ≡ z2; therefore we have

(u−2)′(z) ≡ (∂u−2) = ∂z2− q̄−1u−2∂

= (1+ q)z+ q2z2∂ − q̄−2z2∂ (2.6)

= (1+ q)z,

which can also be easily seen from Eq. (2.4). These first leading cases clearly show
from where the prime derivative formula (2.4) comes from.
The total Leibnitz derivative applied tou−k(z) = zk, k ≥ 0, is simply derived using
successive action of the deformedq-derivative∂ ≡ ∂q. We find

∂zk =
(

k−1∑
i=0

qi

)
zk−1+ qkzk∂, (2.7)

which justify, in some sense, the consistency of Eq. (2.4) in describing the “con-
formal spin” content of the analytic fieldsuk(z). Settingk = 1, one recovers in a
natural way, the standard relation (2.1) just by settingk = 1. The second examples
we consider is the following:

Example 2: uk(z) = z−k, k ≥ 1
Corresponding relations are computed in the same way. We find

∂z−k = −
(

k∑
i=1

q̄−1

)
z−k−1+ q̄−kz−k∂, (2.8)
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which reduces to

∂z−1 = −q̄z−2+ q̄z−1∂ (2.9)

upon settingk = 1.
Now having introduced the ringRof analyticq-deformed currents, and shown

how theq-deformed derivative acts, we are now in a position to introduce the space
of q-deformed (pseudo)-differential operators.

2.2. The Space ofq-deformed Lax Operators

Let4(r,s)
m denote the space ofq-deformed local differential operators, labeled

by three quantum numbersm, r , ands defining respectively the conformal spin,
the lowest and the highest degrees. Typical elements of this space are given by

Lm =
s∑

i=r

um−i (z)∂ i , r, s, m ∈ Z. (2.10)

The symbol∂ stands for theq-derivative andum−i (z) are analystic fields of con-
formal spin(m− i ). The space4(r,s)

m behaves then as a (1+ s− r )-dimensional
space generated byL (r,s)

m ≡ Lm and whose space decomposition is given by the
linear sum

4(r,s)
m =

s⊕
i=r

4(i ,i )
m , (2.11)

with

4i ,i
m = Rm⊗ ∂ i . (2.12)

A special example of the space4(r,s)
m is given byRm ≡ 4(0,0)

m [Eq. (2.2)], the set
of analytic fieldsum(z) introduced previously and∂ i ≡ ∂ i

q is thei th q-derivative.
A natural example of Eq. (2.10) is given by theq-deformed Hill operator

L2 = ∂2+ u2(z), (2.13)

which will play an important role in the study of theq-deformed KdV equation
and the associated “conformal”q-Liouville field theory.

A result concerning the algebra4(r,s)
m is the derivation of theq-Leibnitz rule

for local q-differential operators. Focusing to derive the general formula, let us
start first by examining the first leading orders. Iteration processing applied to
Eq. (2.3) gives the following relations:

∂uk(z) = u′k(z)+ q̄kuk(z)∂

∂2uk(z) = u′′k(z)+ q̄k(1+ q̄)u′k(z)∂ + q̄2kuk(z)∂2 (2.14)

∂3uk(z) = u′′′k (z)+ q̄k(1+ q̄ + q̄2)u′′k(z)∂ + q̄2k(1+ q̄ + q̄2)ui
k(z)∂2
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+ q̄3kuk(z)∂3

...

The crucial point was the observation that5 these higher first-order derivations
formulas can be summarized into the following general Leibnitz rule:

∂vuk(z) =
p∑

j=0

q̄(p− j )kχ j
p(q)u( j )

k (z)∂ p− j , p ≥ 0, (2.15a)

whereχ j
p(q) areq-coefficient functions that we have introduced such that

χ0
p(q) = χ p

p (q) = 1 (2.15b)

and

χ j
p(q) = 1+ q̄ j

j−1∑
m1=0

qm1 + q̄2 j
j−1∑

m1=0

j−1−m1∑
m2=0

q2m1+m2

+q̄3 j
j−1∑

m1=0

( j−1−m1)∑
m2=0

( j−1−(m1+m2))∑
m3=0

q3m1+2m2+m3

+ · · ·

+q̄(p− j ) j
j−1∑

m1=0

j−1−m1∑
m2=0

· · ·
j−1−∑p− j−1

i=1 mi∑
mp− j=0

q
∑p− j−1

β=0 (p− j−1−β)mβ+1 (2.15c)

for 1≤ j ≤ p− 1. Some remarks are in order:

1. From theq-Leibnitz rule (2.15a), one can deduce theq-analogue of the
standard binomial coefficientsC j

p as follows:

C0
p

q−→ q̄pkχ0
p(q) ≡ q̄pk

(2.16a)
Cp

p
q−→ χ p

p (q) = 1

and for 1≥ j ≥ p− 1

C j
p

q−→ q̄(p− j )kχ j
p(q) (2.16b)

2. Settingq = 1, the local Leibnitz rule (2.15a) reduces naturally to the
standard derivation law

∂ puk(z) =
p∑

j=0

C j
pu( j )

k (z)∂ p− j , p ≥ 0, (2.17a)

5 This observation was possible after performing several nontrivial algebraic manipulations toward
writing Eqs. (2.14) in a compact form.
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giving rise to the following useful relations

χ0
p(1) = C0

p = 1
(2.17b)

χ p
p (1) = Cp

p = 1

and for 1≤ j ≤ p− 1

C j
p = χ j

p(1) = 1+ j + j ( j + 1)

2

+
j−1∑

m1=0

( j−1−m1)∑
m2=0

( j−1−m1−m2)∑
m3=0

1

+ · · · +
j−1∑

m1=0

j−1−m1∑
m2=0

· · ·
j−1−∑p− j−1

j=1∑
mp− j=0

1 (2.17c)

3. As we can easily check, Eq. (2.15c) is a sum of (p− j + 1) objects starting
from the value 1 which corresponds to set (j = p) with zero summation.
In each term of the remaining (p− j ) objects, we have a product of (n)
summation

∑
m1=0

∑
m2=0 · · ·

∑
mn=0 with 1≤ n ≤ p− j . This structure

is useful in the standard limitq = 1, recovering then the explicit form
[Eq. (2.17c)] of the well-known binomial coefficientC j

p = P!
(P− j )! j ! .

Moreover, Eq. (2.10) which is well defined for local differential operators with
s ≥ r ≥ 0, may be extended by the negative integers (nonlocal ones) by introducing
q-deformed pseudo-differential operators of the type∂

−q
q , p ≥ 1, whose action on

the fieldsuk(z) of conformal spink ∈ z is constrained to satisfy

∂ p∂−puk(z) = ∂−p∂ puk(z) = uk(z). (2.18)

Following the same analysis developed previously, we derive the following
formulas:

∂−1uk(z) =
∞∑

i=0

(−)i q
(
k(i+1)+ i (i+1)

2

)
u(i )

k (z)∂−i−1

∂−2uk(z) =
∞∑

i=0

(−)i q
[
k(i+2)+ i (i+1)

2

] ( i∑
j=0

q j

)
u(i )

k (z)∂−2−i ,

∂−3uk(z) =
∞∑

i=0

(−)i q
[
k(i+3)+ i (i+1)

2

] ( i∑
j1=0

j1∑
j2=0

q j1+ j2

)
u(i )

k ∂
−3−i , (2.19)

...
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From these first leading formulas, we extract the following nonlocal Leibnitz rule:

∂−puk(z) =
∞∑

i=0

(−)i q
[
k(i+p)+ i (i+1)

2

]  i∑
j1=0

j i∑
j2=0

· · ·
j p−2∑

j p−1=0

q
∑p−1

m=1 jm

 u(i )
k (z)∂−p−i

(2.20)
Here we also remark that, for a fixed value ofp ≥ 1, we have aq-deformed
binomial coefficient given by a product of (p− 1) summation

∑
m1=0 · · ·

∑
mp−1=0.

Settingq = 1, one recovers the standard Leibnitz rule for nonlocal differential
operators, namely

∂−puk(z) =
p∑

i=0

(−)i Ci
i+p−1u(i )

k ∂
−p−1 (2.21)

for p ≥ 1, with the identity relation

Ci
i+p−1 =

i∑
J1=0

j i∑
j2=0

· · ·
j p−2∑

j p−1=0

1 (2.22)

coinciding exactly withχ i
i+p−1(1) as we can easily learn from Eq. (2.17b). Other

important results are reported in Appendix A.
Up to now, we have introduced the ringRof analytic functions and constructed

the space of arbitraryq-deformed Lax operators by deriving the generalized
q-Leibnitz rules. The next task is to see how we can apply the obtained results to
study some important features of nonlinear integrable systems and conformal sym-
metry. Special examples, namely the Liouville field theory and the KdV equation
as well as their extensions, will be considered.

3. GENERALIZED q-DEFORMED KdV HIERARCHY

In this section we propose to apply the results found previously to build
theq-analogues of the KdV-hierarchy systems. We will consider in particular the
first leading orders of this hierarchy, namely the KdV and Boussinesq integrable
systems.

Let us consider theq-deformed KdV Lax operator

L2 = ∂2+U2, (3.1)

which belongs to the coset space4
(0,2)
2

4
(1,1)
2

, for which we haveu0 = 1 andu1 = 0. As
known from standard references in nonlinear integrable models (Bakas, 1989a,b;
Das, 1989; Faddeev and Takhtajan, 1987, Jimbo and Miwa, 1990; Kupershmidt
1990; Lax 1968, 1975; Manin and Radul, 1985; Mathieu, 1988a,b; Smit, 1990;
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Yamagishi, 1988), we can set by analogy

∂L2

∂t2n+1
= (H2n+1, L2)q, (3.2)

which gives thenth evolution equation of theq-deformed KdV-hierarchy with

H2n+1 =
(

L
2n+1

2
2

)
+
. (3.3)

The index “+” in Eq. (3.3) stands for the local part of the deformed pseudo-

differential operatorL
2n+1

2
2 defined as

L
2n+1

2
2 = L

1
2
2 Ln

2. (3.4)

L1/2
2 is just the half power of theq-KdV Lax operator introduced in Eq. (3.1). It

describes aq-deformed pseudo-differential operator of dimension 2× 1
2 = 1. The

nonlinearq-deformed pseudo-differential operatorL2n+1/2
2 is just the (2n+ 1)th

power ofL1/2
2 . The standard method used to construct such kinds of operators can

be found in one of the references cited in [1]. To work out explicitlyH2n+1 we first
need to computeL1/2

2 . Using dimensional arguments we assume thatL1/2
2 takes

the following form:

L
1
2
2 = ∂ + a(q)u2∂

−1+ b(q)u′2∂
−2+ (c(q)u′′2 − d(q)u2

2)∂−3+ · · · , (3.5)

where the first leading coefficientsa, b, c, andd are required to satisfy

L2 = L
1
2
2 L

1
2
2 . (3.6)

Using this requirement, we find explicitly

a(q) = 1

1+ q̄2

b(q) = 1

(1+ q̄3)(1+ q̄2)

c(q) = 1

(1+ q̄2)(1+ q̄3)(1+ q̄4)

d(q) = q2

(1+ q̄2)2(1+ q̄4)
. (3.7)

Later on, we will introduce the dot on the analytic fieldsu̇2 to describe the
derivation with respect to time coordinates while the prime derivative is already
introduced in Eq. (2.3) to denote the derivation with respect to the space
variablez.
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Furthermore, the bracket introduced in Eq. (3.2) is nothing but theq-deformed
commutator, which we define as

[ f ∂n, g∂m]q = q̄m f̃ f ∂ng∂m − q̄ng̃g∂m f ∂n, (3.8)

where f and g are two arbitrary functions of conformal spiñf and g̃. Setting
n = 0, Eq. (3.2) becomes

∂L2

∂t1
= [H1, L2]q, (3.9)

whereH1 = (L
1
2
2 )+ = ∂. We also show that Eq. (3.9) corresponds simply to the

chiral wave equation

u̇2 = u′2, (3.10)

which means the equality of dimensions [t1] = [z]. For n = 1, one has

∂L2

∂t3
=
[(

L
3
2
2

)
+

, L2

]
q

, (3.11)

where (L
3
2
2 )+, explicitly given by(

L
3
2
2

)
+
∂3+ (q̄2+ a(q))u2∂ + (1+ b(q))u′2, (3.12)

is theq-deformed Hamiltonian operator associated with theq-Virasoro algebra.
Injecting this expression into Eq. (3.11) we can extract a nonlinear differential

equation giving the evolution of theq-spin-2 currentu2, once some easy algebraic
manipulations are done. Indeed, identifying the r.h.s. and l.h.s. terms of Eq. (3.11),
we shall impose some terms of the r.h.s to vanish. We then obtain the following
differential equation:

u2 = A(q)u2u′2+ B(q)u′′′2 , (3.13)

where A(q) and B(q) are two constrained,q-dependent coefficients functions,
which can be determined. Simple computations then lead to

A(q) = 1+ q̄ + q̄4

1+ q2
(3.14)

B(q) = −1+ q̄ + q̄2

(q̄ + 1)2
.

This nonlinear differential equation is nothing but theq-deformed KdV system

u̇2 =
(

1+ q̄ + q̄4

1+ q̄2

)
u2u′2−

1+ q̄ + q̄2

(1+ q̄)2
u′′′2 , (3.15)
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which coincides in the classical limit with the well-known KdV integrable system
(Das, 1989)

u2 = 3

2
u2u′2−

3

4
u′′′2 , (3.16)

and associated to the Hamiltonian differential operator

(L
3
2
2 )+ = ∂3+ 3

2
u2∂ + 3

4
u′2. (3.17)

The same computations hold for theq-deformed Boussinesq equation. For more
details concerning the results obtained for this system, we refer to Appendix B.
Note finally that the deformed KdV hierarchy discussed in this paper is based on the
structure of the algebra ofq-pseudo-differential operators as described previously.
Otherq-deformation of this hierarchy are also possible; as an example we refer
the reader to Frankel (1996).

4. CONFORMAL TRANSFORMATIONS AND q–W CURRENTS

We start this section by presenting the conformal transformation of the spin-2
currentu2(Z) of theq-KdV hierarchy and give later the general relations for the
higher spin conformal currentsun(z), n ≥ 2. We also discuss the primary condition
of the fieldsWn, n ≥ 2, by using the Volterra gauge group transformations for the
q-covariant Lax operators.

4.1. q-Generalized Conformal Transformations

Let

L2 = ∂2+ u2 (4.1)

be the Lax operator of theq-KdV hierarchy discussed in Section 3. Now we want
to show how the spin-2 conformal currentu2(z) transforms under a conformal
transformation,

z→ z̃= f (z). (4.2)

Under such a transformation, we assume that theq-deformed KdV Lax operator
(4.1) transforms as (Bakas, 1989a,b; Di-Francescoet al., 1991; Manin and Radul,
1985; Mathieu, 1988a,b; Smit, 1990; Yamagishi, 1988)

L2(u(z))→ L̃2(ũ2(z)) = ψ− 3
2 L2(u2(z))ψ

1
2 , (4.3)

whereψ = ∂z
∂ z̃. The choice of9-powers in Eq. (4.3) is dictated by the fact that

L2(u(z)) maps densities of degree (− 1
2) to densities of degree

(+ 3
2

)
. We have

∂ → ∂̃ = ψ∂, (4.4)
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which imply

∂̃2 = ψψ ′∂ + ψ2∂2. (4.5)

Using straightforward computations, we find

ψ
3
2 L2ψ

1
2 = ψ2∂2+ 1

2
(1+ q̄)ψ ′ψ∂ + ψ2u2+ 1

2

(
ψ ′′ψ − 1

2
q̄(ψ ′)2

)
, (4.6)

from which we can easily derive the following result:

L̃2(ũ(z̃)) = ∂̃2+ q̄ − 1

2
ψ ′∂̃ + ũ2. (4.7)

This clearly shows how the conformal transformation violates the standard con-
variantization property in the case ofq-Lax operators. However, forq = 1, we
recover this property naturally, since the coefficient term of∂̃ in Eq. (4.7) vanishes
as is proportional toq̄−1

2 .
Using the identification Eq. (4.7), we obtain the following conformal trans-

formation for the fieldu2(z):

u2(z) = ψ−2ũ2(z̃)− 1

2
S(2)

u (q, ψ), (4.8)

where we denote byS(2)
u2

(q, ψ) the q-Shwarzian derivative associated with the
currentu2 and defined as

S(2)
u2

(q, ψ) = ψ ′′

ψ
− 1

2
q̄

(
ψ ′

ψ

)2

. (4.9)

The upper index “(2)” inS(2)
u2

stands for the order of theq-KdV hierarchy.
Furthermore, Eq. (4.8) shows thatu2(z) transforms, as a field of conformal

spin 2, up to an anomalous termSu2
(2)(q, ψ) exactly like the energy–momentum

tensor of two-dimensional conformal fields theories.
The second example we consider is theq-Boussinesq hierarchy associated

with theq-deformed Lax operator

L3(u2, u3) = ∂3+ u2∂ + u3. (4.10)

Similarly, the conformal transformation (4.2) implies in this case

L3(u2, u3)→ L̃3(ũ2, ũ3) = ψ2L3(u2, u3)ψ, (4.11)

leading to the following result:

ψ2L3ψ = ψ3∂3+ (1+ q̄ + q̄2)ψ2ψ ′∂2+ {(1+ q̄ + q̄2)ψ2ψ ′′

+u2ψ
3}∂ + u3ψ

3+ u2ψ
2ψ ′ψ2ψ ′′′, (4.12)

with

L̃3(ũ, ũ3) = ∂̃3+ (q̄2− 1)ψ ′∂̃2+ ũ2∂̃ + ũ3. (4.13)
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Using again the identification (4.11), we obtain the following results:

u2 = ψ−2ũ2+ S(3)
u2

(q, ψ)(a)

u3 = ψ−3ũ3− ψ
′

ψ
ũ2+ S(3)

u2
(q, ψ)(b), (4.14)

whereS(3)
u2

andS(3)
u3

are theq-Shwarzian derivatives associated respectively with
the conformalu2 andu3. They are given by

S(3)
u2

(q, ψ) = q̄2

(
ψ ′

ψ

)2

− q̄(q̄ + 1)
ψ ′′

ψ
(4.15)

S(3)
u3

(q, ψ) = ψ ′′′

ψ
+ ψ

′

ψ
S(3)

u2
(q, ψ).

Note by the way thatS(3)
u2

andS(3)
u3

are shown to relate as follows:

∂S(3)
u2
+ q̄(q̄ + 1)S(3)

u3
= 0. (4.16)

As suspected forq = 1, one can find the standard formulas given by (Bakas,
1989a,b; Di-Francescoet al., 1991; Manin and Radul, 1985; Mathieu, 1988a,b;
Smit, 1990; Yamagishi, 1988)

u2 = ψ−2ũ2− S(3)
u2

(1,ψ)
(4.17)

u3 = ψ−3ũ3− ψ ′

ψ3
ũ2− S(3)

u3
(1,ψ),

with

S(3)
u2

(1,ψ) =
(
ψ ′

ψ

)2

− 2
ψ ′′

ψ
(4.18)

S(3)
u3

(1,ψ) = ψ ′′′

ψ
+ ψ

′

ψ
S(3)

u2
(1,ψ),

and

∂S(3)
u2
+ 2S(3)

u3
= 0. (4.19)

The presence of the anomalous term in Eq. (4.14b) can be removed by a convenient
basis choice, namely the primary basis, which we will discuss later on.

Having given explicitly the conformal transformation of the currentsu2 and
u3 of conformal spin 2 and 3 respectively, we now focus to generalize these results
to higher conformal spin currentsun(z), n = 2, 3. . . .
Let

Ln[u] = ∂n +
n−2∑
i=0

un−1∂
i (4.20)
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be the higher order Lax operator involving (n− 1) conformal currents withu0 = 1
andu1 = 0 and where∂ = ∂q. Under the conformal transformation (4.2), this Lax
operator is assumed to transform as

Ln[u] → L̃n[ũ] = ψ n+1
2 Ln[u]ψ

n−1
2 . (4.21)

Similar to the previous study, the structure of the Lax operatorLn[u] [Eq. (4.20)]
is broken under the conformal transformation. We find in general

L̃n[ũ] = ∂̃n + Aψ ′∂̃n−1+
n−2∑
i=0

ũn−1∂̃
i , (4.22)

whereA is an arbitrary Lorentz scalar function which we will precise.
To determineL̃n, we need to compute explicitlỹ∂n. Starting from Eq. (4.4)

and using simply algebraic manipulation, we find the following results:

∂̃n =
n∑

i=1

Mn
i ∂

i , (4.23)

whereMn
i are functions of conformal spin (n− i ), which we can summarize as

follows:

Mn
n = ψn

Mn
1 = ψ∂Mn−1

1 (4.24)

Mn
i = ψ [Mn−1

i−1 q̄(n−i ) + ∂Mn−1
i ], 2 ≤ i ≤ n− 1.

Substituting these relations into Eq. (4.22) we find

L̃n =
n∑

i=0

Xi (A, M, ψ)∂n−1, (4.25)

where

Xi (A, M, ψ) =
i∑

j=0

ũ j M
n− j
n−i . (4.26)

On the other hand, simply performing algebraic calculations show that the r.h.s.
of Eq. (4.21) lead to

ψ
n+1

2 Ln[u]ψ
n−1

2 = ψ n+1
2

n∑
i=0

(
i∑

j=0

ui− j X
j
n− j+i (q)

(
ψ

n−1
2

))
∂n−i . (4.27)

Identifying then Eq. (4.25) with Eq. (4.27) we find

A(q, ψ) = ψ1−n

ψ ′

[
χ1

n (q)ψ
n+1

2

(
ψ

n−1
2

)′
− Mn

n−1

]
, (4.28)
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with

χ1
n (q) =

n−1∑
i=0

q̄i

(4.29)
χ0

n = χn
n = 1,

and

ui = ψ−n

{
Mn

n−i +
i∑

j=1

[
ũ j M

n− j
n−i − ψ

n+1
2 ui− jχ

j
n−i+ j (q)

(
ψ

n+1
2

)( j )
]}

for 0≤ i ≤ n. (4.30)

We then clearly show how to transform the conformal currentsui , i ≥ 2, under
Eq. (4.2). The first thing we learn from these results is the dependence on the
q-parameter, which once coincides withq = 1 leads to the standard formulas.
To illustrate the obtained results, we consider two particular examples discussed
previously, namely theq-KdV andq-Boussinesq integrable models described re-
spectively byL2(u) andL3(u).

The former is easily obtained by settingn = 2 into Eqs. (4.28)–(4.30), which
recover Eqs. (4.8) and (4.9) exactly with

A = q̄ − 1

2
(4.31)

Similarly, Eqs. (4.14) and (4.15) are obtained by settingn = 3 Eqs. (4.27) and
(4.28) with

A = q̄2− 1. (4.32)

4.2. Volterra Gauge Group Transformation andq–W Currents

In the framework to generalise the conformal transformations to theq-
deformed case, we found, in addition to new features, the presence of anoma-
lous terms at the level of the conformal currentu3, u4, . . . , un [Eq. (3.30)].

Our idea is to consider a Volterra gauge group transformation associated to an
“orbit” in which no such anomalous terms can appear. We start first by recalling the
Volterra gauge group symmetry. This is a symmetry group whose typical elements
are given by the Lorentz scalarq-pseudo-differential operators (Rachidi, xxxx)

K [a] = 1+
∑
i≥1

ai (z)∂−1, (4.33)

whereai (z) are arbitrary analytic functions of conformal spini = 1, 2, 3,. . ..
These functions, to which we shall refer hereafter to as the Volterra gauge
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parameters, can be expressed in terms of the residue operation as

ai (z) = Res(K (a)∂ i−1), (4.34a)

where

Res∂
i = δi+1,0, (4.34b)

and for a given functionf (z), we recall that we have Eq. (2.3):

∂ f (z) = f (z)+ q̄ f̃ f (z)∂. (4.35)

Next, we will apply this Volterra gauge group symmetry to the algebra ofq-Lax
operators (4.20) via the following relation:

Ln(u)→ Ln(w) = K−1(a)Ln(u)K (a), (4.36)

whereLn(w) is the transform ofLn(u) under the Volterra group action withw =
w(a, u) is a function which depends on the Volterra parameterai and theu-fields.
Moreover, Eq. (4.36) shows that theu-currents may be expressed completely in
terms of the Volterra gauge parametersai and theirkth derivatives. However,
solving Eq. (4.36), one finds that the new fieldswi are polynomials in the old
u-fields and the Volterra parameters and their derivatives.

Making the appropriate choices of the Volterra parameters dictated by the
primary condition, thew-fields can then be expressed in terms of theu-fields
exactly as do the primaryw-currents which satisfy (Di-Francescoet al., 1991)

ws(z) = ψ−sw̃s(z̃). (4.37)

To illustrate how things work, let us focus on solving Eq. (4.36) for the special
casen = 3. We have

L3(u) = ∂3+ u2∂ + u3 (4.38)

describing the Lax operator of theq-Boussinesq integrable system. Applying the
Volterra gauge group symmetry Eqs. (4.36)–(4.38), by identifying

K (a)L3(w) = L3(u)K (a), (4.39)

we find, after straightforward algebraic calculations, the following formulas for
the first parametersa1, a2, a3, a4:

q̄3a1 = a1

a2+ w2 = u2+ q̄6a2+ q̄2(1+ q̄ + q̄2)a′1
a3+ w3+ q2a1w2 = u3+ q̄9a3+ q̄a1u2+ q̄4(1+ q̄ + q̄2)a′2

+q̄(1+ q̄ + q̄2)a′′1
a4+ q3a1w3− q5a1w′2+ q4a2w3 = a1u3+ q̄2a2u2+ q̄12a4+ q̄2(1+ q̄
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+q̄2)a′′2 + q̄6(1+ q̄ + q̄2)a′3
+a′′1a′1u2. (4.40)

We also show that the remaining Volterra parametersaj , j ≥ 2, are constrained to
satisfy

aj+3(q̄3( j+3)− 1) = a1(−1) j−1q
3 j+ j

(
j−1
2

)
w( j−1)

3 + a1(−1) j q
2( j+1)+ j

(
j+1
2

)
w( j )

2

+
∞∑

i=0

aj−i q
3 j+i ( i+1

2 )

 i∑
k1=0

· · ·
kj−i−2∑

kj−i−1=0

q
∑ j−i−1

m=1 km

w(i )
3

+
∞∑

i=0

aj−i+1q
2( j+1)+i ( i+1

2 )

 i∑
k1=0

· · ·
kj−i−1∑
kj−i=0

q
∑ j−i−1

m=1 km

w(i )
2

− q̄ j+1(1+ q̄ + q̄2)a′′j+1− q̄ j+1aj+1u2− a′′′j

− q̄2( j+2)(1+ q̄ + q̄2)a′j+2− a′j u2− aj u3, . (4.41)

Consequently, we learn from Eq. (4.40) that the spin-1 Volterra gauge parameter
a1 vanishes naturally for arbitrary values of the parameterq. This leads to set

a1 = 0 (4.42a)

(1− q̄6)a2 = u2− w2 (4.42b)

(1− q̄9)a3 = u3− w3+ q̄4(1+ q̄ + q̄2)a′2 (4.42c)

(q̄9− 1)a4 = q4a2w3− q̄2(1+ q̄ + q̄2)a′′2
− q̄6(1+ q̄ + q̄2)a′3− (a′1+ q̄2a2)u2, (4.42d)

with the constrains (4.41). Note that whenq = 1, one recovers from Eqs. (4.42), a
Volterra gauge orbitKq=1{ai } in which thewi -fields are seen as primary currents
(Rachidi, xxxx).

Actually, our principal task is to make an appropriate choice of the Volterra pa-
rametersai such thatwi become primary conformal currents satisfying Eq. (4.37).
Recall also that in the classical limit the analytic fieldu2 behaves as a spin-2
field of 2D conformal field theory, coinciding with thew2 current. Similarly, in
the deformed case we can requirew2 to be proportional tou2, which leads from
Eq. (4.42b) to set

a2 = δu2, (4.43)

whereδ is an arbitrary constant for the moment. We then have

w2 = u2(1− δ(1− q̄6)). (4.44)
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Substituting Eq. (4.43) into Eq. (4.42c), we obtain

a3 = β1u3+ β2u′2, (4.45)

whereβ1 andβ2 are, for instance, arbitrary constants which can be fixed.
The resulting expression for theq-deformedw-current of spin 3 is

w3 = u3[1+ (q̄9− 1)β1] + u′2bq̄4(1+ q̄ + q̄2)δ + β2(q̄9− 1)c, (4.46)

with the constraints equation (4.41) giving the remaining Volterra parameters
aj , ≥5.

a4(q̄9− 1) = q4a2w3− q̄2(1+ q̄ + q̄2)a′′2
− q̄6(1+ q̄ + q̄2)a′3− (a′1+ q̄2a2)u2

aj+3(q̄3( j+3)− 1) =
3∑

i=0

aj−1q
3 j+i ( i+1

2 )

 i∑
k1=0

· · ·
kj−i−2∑

kj−i−1=0

q
∑ j−i−1

m=1 km

w(i )
3

+
3∑

i=0

aj−i+1q
2( j+1)+( i+1

2 )

 i∑
k1=0

· · ·
kj−i−1∑
kj−i=0

q
∑ j−1

m=1 km

w(i )
2

− q̄ j+1(1+ q̄ + q̄2)a′′j+1− q̄ j+1aj+1u2− a′′′j

− q̄−2( j+2)(1+ q̄ + q̄2)a′j+2− a′j u2− aj u3. (4.47)

Now, let us consider a conformal transformation of the spin-3w-current
[Eq. (4.46)]:

w̃3 = ψ3w3+ y3, (4.48)

wherey3 is a function of conformal spin 3 given by

y3 = ψ2ψ ′{1+ 2q̄4(1+ q̄ + q̄2)δ + (q̄9− 1)β1+ 2(q̄9− 1)β2}u2

+ψ3

{(
S(3)

u3 − ψ
′

ψ
S(3)

u3

)
−
(

2
ψ ′

ψ
S(3)

u2
+ ∂S(3)

u2

)
q̄4(1− q̄ + q̄2)δ

+ (q̄9− 1)

(
S(3)

u3
− ψ

′

ψ
S(3)

u2

)
β1− (q̄9− 1)

(
2
ψ ′

ψ
S(3)

u2
+ ∂S(3)

u2

)
β2

}
.

Imposing the primary condition (4.37) implies the vanishing ofy3 from which one
can derive a solution for the constantsδ(q), β1(q), andβ2(q) which are required
to coincide in the classical limit withβ(1)= −1/6, β1(1)= 0, andβ2(1)= 1/6
respectively.
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5. NOTE ON THE su(n)-TODA FIELD THEORY CONSTRUCTION

In we this section we set up some crucial ingredients toward building theq-
deformed analogue of 2D su(n)-Toda like conformal field theory, using the previous
analysis. The starting point consists in exploiting the correspondence which exists
between the second Hamiltonian structure of integrable systems and the Virasoro
conformal algebra which is the symmetry of 2D Liouville field theory.

Consider then the integrableq-KdV equation discussed previously in
Section 3 and which we can conveniently take as follows (see Eq. (3.15)):

u2 =
(

1+ q̄ + q̄4

1+ q̄2

)
u2u′2−

1+ q̄ + q̄2

(q̄ + 1)
u′′′2 . (5.1)

Applying the Miura transformation (which connects the dynamical currentu2 with
the scalar fieldϕ ≡ ϕ(z, z̄) to theq-deformed KdV Lax operator as follows:

L2 = (∂2+ u2) = (∂ + A)(∂ + B), (5.2)

whereA andB are spin-1 fields, which are constrained to satisfy{
A = −q̄B

AB+ B′ = u2,
(5.3)

with B′ = (∂B). A solution to this system is{
A = −∂ϕ
B = q∂ϕ,

(5.4)

which gives

u2 = q(∂2ϕ − (∂ϕ)2). (5.5)

This equation shows thatu2 is aq-deformed spin-2 current, which behaves like
the stress-energy–momentum tensor of 2D Liouville conformal field theory. An
important point is to look for the Lagrangian of this theory. Using the standard
knowledge on conformal Liouville field theory (Alvarez-Gaum´e and Gomez, 1991;
Mansfield, 1982, 1983; Olive and Turok, 1986; Saidi and Sedra, 1993, 1994b,c;
Sedra, 1998), we can set by analogy

S[ϕ] =
∫

d2z

{
∂ϕ∂̄ϕ + 2

b
exp(bϕ)

}
, (5.6)

where the coefficient numberb is shown to take the valueb = (1+ q̄) (see Ap-
pendix D). We also show that the equation of motion which emerges from this
action is nothing but theq-deformed 2D conformal Liouville equation given by

∂∂̄ϕ − 2q̄ e(1+q̄)ϕ = 0 (q̄ = q−1). (5.7)

To obtain this equation, one must precise, as explicitly shown in Appendices C and
D, that the Euler–Lagrange equations should be applied taking into account the
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previous analysis. Theq-deformed form of the conserved current can be written
as

T(ϕ) ≡ q∂2ϕ − q(∂ϕ)2, (5.8)

whose conservation is assured by the equation of motion (5.7),

∂̄T(ϕ) = 0. (5.9)

Note that this conservation law combined with Eq. (5.7) fixes theq-coefficient
numberb = (1+ q̄) in the exponential Equation (5.6). Before closing this discus-
sion some remarks are in order.

First note that the action (5.6) is conformally invariant and generalizes nat-
urally the su(2) standard Liouville theory. As already known from the standard
studies, the coefficient number in the exponential Liouville potential is closely
connected with the Cartan matrix of some simple Lie algebra. An important task
is to look for the interpretation of the coefficient (q̄ + 1), appearing in our expo-
nential, from the Lie algebraic point of view. Recall that this number coincides in
the classical limit case with the number 2, which is nothing but the Cartan matrix
of the su(2) Lie algebra.

However, the choice of ourq-KdV Lax operator in Eq. (5.2) shows already
the existence of an su(2) symmetry, which can also be recovered from the Liouville
action. Indeed, if we redefine the scalar fieldϕ to be

8 = q̄ + 1

2
ϕ, (5.10)

we can easily read the su(2) symmetry from the Liouville action. The latter becomes

S[8] =
∫

d2z

{
λ∂8∂̄φ + 2

q̄ + 1
exp(2φ)

}
(5.11)

upon introducing a parameter3, namely

λ =
(

q̄ + 1

2

)2

. (5.12)

Theq-deformed Liouville equation of motion becomes

∂∂̄8− q̄(q̄ + 1) exp(28) = 0. (5.13)

We can also think to generalize the aboveq-deformed su(2)-Liouville field theory
to the su(n) conformal Toda field theory. We set for the moment

Ssu(n)− Toda=
∫
∂2z

(
∂φ∂̄φ + η(q)

n−1∑
i=1

exp(αiφ)

)
, (5.14)



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp679-ijtp-455416 November 19, 2002 11:20 Style file version May 30th, 2002

Algebra of q-Deformed Pseudo-differential Operators 2359

whereφ =∑n−1
j=1 α jφ j andα j are the simple root of the su(n) Lie algebra whose

Cartan matrix is defined as

Ki j = αiα j , (5.15)

and whereη(q) is a function of the parameterq, which can easily be fixed, given the
corresponding model in the generalized KdV hierarchy. More on thisq-deformed
Toda field theory construction may be a subject of future works.

6. CONCLUSION

We tried in this work to understand the behavior of 2D nonlinear integrable
systems in theq-deformed case. For this reason, we started by generalizing some
well-known results in the theory of formal pseudo-differential operators to the
q-deformed case. The obtained results are applied to build theq-analogues of the
generalized integrableq-KdV hierarchies whose first leading orders are theq-KdV
andq-Boussinesq systems. We derived the dynamical equations of these deformed
integrable hierarchies, leading in fact to the standard ones, once theq-parameter
is fixed to be 1. We discussed how to transform in the deformed case the currents
u j (z) under a conformal transformation. The results obtained showed a nontrivial
behavior of these currents, which coincides naturally with the standard results upon
settingq = 1. We discussed also the primary condition of these currents using the
Volterra gauge group symmetry. In the last part of this work, devoted to the Toda
field theory construction, we presented theq-analogue of the su(2) Liouville and
su(n) Toda conformal field theories. Other algebraic properties are reported in the
appendices.

APPENDIX A

Let f (z) be an arbitrary analytic function of conformal spin1 f = f̃ . Using
Eq. (2.3) and the iterative action of theq-deformed derivative, we find

∂ f n(z) = (1+ q̄1 f̃ + q̄−2 f̃ + · · · q̄(n−1) f̃ ) f ′ f n−1+ q−n f̃ f n∂, (A1)

wheren is a positive integer number. Settingq = 1 one recovers, once again, the
ordinary derivation rule

∂ f n(z) = n f ′ f n−1+ f n∂. (A2)

A special choice off (z) in Eq. (A1) is given byf (z) = z with z̃= −1,

∂zn = (1+ q + q2+ · · · + qn−1)zn−1+ qnzn∂, (A3)
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which reduces to Eq. (2.1) upon settingn = 1. For negative integer numbers we
easily find

∂ f −n(z) = −(q f̃ + q2 f̃ + · · · + qn f̃ ) f ′ f n−1+ qn f̃ f −n∂, (A4)

which becomes, upon settingq = 1,

∂ f −n(z) = −n f ′ f −n−1+ f −n∂. (A5)

As before, settingf (z) = z we obtain

∂z−n = −(q̄ + q̄2+ · · · + q̄n)z−n−1+ q̄nz−n∂. (A6)

Furthermore, we note that for half integer powers off (z) we can obtain general
formulas. The method to do this starts from setting

∂ f 1/2 = α(q) f ′ f −1/2+ β(q) f 1/2∂, (A7)

whereα(q) andβ(q) are two arbitraryq-dependent functions that we can determine
explicitly by the following trivial property:

∂( f 1/2 f 1/2) ≡ ∂( f ). (A8)

General formulas are given by

∂ f
2n+1

2 (z) =
(
1+ q̄

f̃
2 + q̄

2 f̃
2 + · · · + q̄

−2n f̃
2

)
(1+ q̄

f̃
2 )

f ′ f
2n+1

2 + q̄
(2n+1) f̃

2 f
(2n+1)

2 ∂, (A9)

and

∂ f
−2n+1

2 (z) =
−q

f̃
2

(
q

f̃
2 + q

2 f̃
2 + q

3 f̃
2 · · · + q

(2n+1) f̃
2

)
(1+ q̄

f̃
2 )

f ′ f
−(2n+3)

2 + q
(2n+1) f̃

2 f
−(2n+1)

2 ∂.

(A10)
Theseq-generalized results are important in discussing theq-deformed Lax evo-
lution equations and the covariantization ofq-differential Lax operators.

Before closing this appendix, note that the ringR= ⊕k∈zRk defined in
Eq. (2.2) is a commutative ring, which means that for eachuk(z) andui (z) be-
longing toR we haveuk(z)ui (z) = ui (z)uk(z). However, applying theq-Leibnitz
rule (2.3), one can easily show the existence of a noncommutative structure in the
space4(r,s)

m of local and nonlocalq-differential operators. Indeed, letf andg be
two arbitrary functions of conformal spiñf andg̃, with fg= gf,

(∂ f )g = f ′g+ q̄ f̃ fg′ + q̄( f̃+g̃) f g∂, (A11)

while

(∂g) f = g′ f + q̄g̃g f ′ + q̄( f̃+g̃)g f ∂, (A12)
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which clearly shows that (∂ f )g 6= (∂g) f for f̃ 6= g̃. Note that this noncommuta-
tivity property of f andg, with respect to the action of theq-derivative∂q, arises
naturally from Eq. (2.3). Note also the important fact that when the functiong
is, for example, thenth power of the functionf with n ∈ R, one can setg = f n

which yieldsg̃ = n f̃ and then

(∂ f )g = (∂g) f, (A13)

with f ′ f n = f n f ′. One can then deduce that the two subspacesRf̃ and Rf̃ of
analytic functionsf (z) andg(z) of conformal spin f̃ and g̃, respectively, do not
commute under the action of theq-derivative∂q unless if there exists a relative
integern ∈ Z, such thatg = f n.

APPENDIX B

q-Deformed Boussinesq Equation

Using the same technique developed for theq-deformed KdV system, we
present in this appendix aq-generalization of the Boussinesq integrable hierarchy
(for a review, see Das, 1989).
Let

L3 = ∂3+ u2∂ + u3 (B1)

be the Lax operator associated with theq-Boussinesq hierarchy, whereu2 andu3

are two currents of conformal spin 2 and 3, respectively. Knowing that (L1/3
3 )3 = L3

and the fact thatL1/3
3 is an object of conformal spin 1, we can set

L
1
3
3 = ∂ + au2∂

−1+ (bu3− cu′2)∂−2+ (du′′2 − eu2
2− f u′3)∂−3+ · · · , (B2)

where the coefficientsa, b, c, d, e, and f are given explicitly by

a = 1

1+ q̄2+ q̄4

b = 1

1+ q̄3+ q̄6

c = 1+ q̄2+ q̄3

(1+ q̄2+ q̄4)(1+ q̄3+ q̄6)

d = 1

(1+ q̄2+ q̄4)(1+ q̄4+ q̄8)

{
(1+ q̄2+ q̄3)(1+ q̄3+ q̄4)

1+ q̄3+ q̄6
− 1

}
(B3)

e= 1+ q2+ q̄2

(1+ q̄2+ q̄4)2
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f = 1+ q̄3+ q̄4

1+ q̄3+ q̄6

so that (
L1/3

3

)
+ = ∂. (B4)

Identifying the r.h.s. and l.h.s. of the following equation:

∂L3

∂t1
= [(L 1

3
3

)
+, L3

]
q, (B5)

we obtain

u′2 = u2

u′3 = u3, (B6)

which give the chiral wave equations for the Boussinesq hierarchy.
Similarly, the identification

∂L3

∂t

[(
L

2
3
3

)
+, L3

]
q (B7)

with (
L

2
3
3

)
+
= ∂2+ a(q̄2+ 1)u2 (B8)

gives

u̇3 = u′′3 + a(1+ q̄2)
{
α′′′u2
+ βu2u2

}
(B9a)

u̇ = u′′2{1+ α2
aq̄(1+ q̄2)(1+ q̄ + q̄2)} + q̄3(1+ q̄)u′3 (B9b)

q̄3u′′3 = (1+ q̄)
{
1+ α2

aq̄(1+ q̄2)
}
u′′′2 , (B9c)

whereα and β are two arbitrary functions of the parameterq, which can be
conveniently fixed in such a way thatα = β = −1 in the classical limit. Combining
(B9a) and (B9c) we find

u̇3 = −q2(1+ q + aαq̄(1+ q̄2))u′′′2 + aβ(1+ q̄2)u2u′2. (B10)

Moreover, note that (B9c) can be written as

u̇3 = −q̄3

(1+ q̄)(1+ aαq̄2(1+ q̄2))
, (B11)

which implies by virtue of (B9b) that

u̇2 = B(q, α)u′3, (B12)
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with

B(q, α) = q̄3(1+ q̄)− q̄3(1+ aαq̄2(1+ q̄2)(1+ q̄ + q̄2))

(1+ q̄)(1+ aαq̄2(1+ q̄2))
. (B13)

Equations (B10) and (B12) then give theq-deformed Boussinesq equations. Set-
ting q = 1 we recover the classical Boussineq equation, namely (Das, 1989)

u̇2 = 7

2
u′3

u̇3 = −4

3
u′′′3 −

2

3
u2u′2. (B14)

Next we will show how theq-deformed Boussinesq equations (B10) and (B12) can
be cast into a simple form. Indeed using straightforward algebraic computations,
(B10) and (B12) simply become

ü2 = B(q, α)

{
xtu
′′
2 +

x2

1+ q̄2
u2

2

}
, (B15)

where

x1 = −q̄2(1+ q + aαq(1+ q̄2))

x2 = aβ(1+ q̄2). (B16)

Forq = 1 we recover the standard Boussinesq equation, namely

ü2 = 2u′′′′2 +
1

2

(
u2

2

)′′
(B17)

APPENDIX C

q-Deformed Exponential

The exponential function exp(z) is also shown to take aq-deformed form.
Indeed, from Eq. (2.7) we can extract the following prime derivative:

(zn)′ ≡ (∂zn) =
( n−1∑

i=0

qi

)
zn−1, (C1)

and write the exponential exp(z) as follows:

exp(z) ≡
∞∑

n=0

zn

[n]q!
, (C2)

where we define theq-deformed factorial numbers as follows:

[n]q! = 1.(q + 1).(q2+ q + 1) · · · (qn−1+ qn−2+ · · · + q + 1). (C3)
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With this definition, we clearly see, from Eqs. (C1) and (C2) that

∂ exp(z) ≡ exp(z), (C4)

with the observation that
n−1∑
i=0

qi = [n]q!

[(n− 1)]q!
. (C5)

Note that one can generalize these definitions of the exponential for an arbitrary
function f (z) of conformal spinf̃ by exploiting the results established before.

APPENDIX D

Variational Principle and q-Deformed Euler–Lagrange Equations

Consider theq-deformed Liouville action which we can write as

S[ϕ] =
∫

d2z

{
∂ϕ∂̄ϕ + 2

b
exp(bϕ)

}
, (D1)

wherea andb areq-dependent coefficients which can be determined using di-
mensional arguments and conservation of the induced conserved current. The
variational principle applied to theq-Liouville actionS reads as

δS[ϕ] = 0⇔
∫

d2z

{
∂L

∂ϕ
δϕ + ∂L

∂(∂ϕ)
δ(∂ϕ)

}
= 0, (D2)

where the Largrangian is given byL = ∂ϕ∂̄ϕ + 2
b exp(bϕ) with ∂ = ∂q and where

the variationδ is required to satisfy [δ, ∂]q = 0, which means that∂δ = δ∂. Using
these remarks and the fact that (by virtue of Eq. (2.3))

∂

(
∂L

∂(∂ϕ)
δϕ

)
≡
(
∂L

∂(∂ϕ)
δϕ

)′
=
(
∂L

∂(∂ϕ)

)′
δϕ + q̄x ∂L

∂(∂ϕ)
∂(δϕ), (D3)

wherex is the conformal dimension of (∂L
∂(∂ϕ) ), we obtain the followingq-deformed

Euler–Lagrange equation

∂L

∂ϕ
− qx∂

∂L

∂(∂ϕ)
= 0 (D4)

for theq-Liouville Lagrangian densityL = ∂ϕ∂̄ϕ + 2
b exp(bϕ). Performing simple

algebraic computations, we find (see Appendix C)

∂L

∂ϕ
= 2

b

∂ebϕ

∂ϕ
= 2ebϕ

∂
∂L

∂(∂ϕ)
= ∂∂̄ϕ (D5)
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from which we easily derive the followingq-deformed Liouville equation of
motion:

2ebϕ − qx∂∂̄ϕ = 0. (D6)

On the other hand, using dimensional arguments, we remark thatx = 1 as the
conformal dimension of the Lagrangian isL̃ = 2. To determine the coefficient
constantb we use the conservation of theq-deformed current (5.8), namely

T(ϕ) = q∂2ϕ − q(∂ϕ)2. (D7)

We have

0= ∂̄T(ϕ) = q∂(∂∂̄ϕ)− q∂̄(∂ϕ)2, (D8)

which fixes the value of the coefficientb, namelyb = (1+ q̄) with ϕ̃ = 0 and

∂̄(∂ϕ)2 = (1+ q̄)∂ϕ∂∂̄ϕ, (D9)

as shown in previous computations. Finally, we have

∂∂̄ϕ − 2q̄e(1+q̄)ϕ = 0 (q̄ = q−1). (D10)

Settingq = 1 one recovers the well-known Liouville equation∂∂̄ϕ = 2e2ϕ asso-
ciated to the Liouville LagrangianL = ∂ϕ∂̄ϕ + exp(2ϕ).

APPENDIX E

q-Deformed Commutator and Compatibility Condition

The use of theq-deformed commutator (3.8) instead of the usual one, namely
[L , B] = L B− BL which is nothing but theq = 1 limit of Eq. (3.8), implies a
nontrivial consideration of the Lax evolution equation (3.2) in terms of the two
compatibility equations. To be more precise let us recall how these equations give
rise to the standard evolution Lax equation (forq = 1) for arbitrary Lax pairL, B.
The compatibility equations are given by the following system of linear equations:

L9 = λ9
B9 = ∂9

∂t
. (E1)

We have

BL9 = Bλ9 = λB9 = λ∂9
∂t
= ∂λ9

∂t
= ∂L9

∂t
, (E2)

which also gives

BL9 = ∂L9

∂t
= ∂L

∂t
9 + L

∂9

∂t
= ∂L

∂t
9 + L B9. (E3)
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We then have

[B, L]9 = (BL − L B)9 = ∂L

∂t
9 ⇔ [B, L] = ∂L

∂t
. (E4)

In the q-deformed case, the situation is not trivial, since the commutator is in-
dispensable to ensure this compatibility isq-deformed. In fact, let us consider
for simplicity theq-differential Lax pairsL2 andH2n+1 = (L2n+1/2

2 )+ required to
satisfy by analogy the Lax evolution equation (3.2)

∂L2

∂t2n+1
= [H2n+1, L2]q, (E5)

where theq-deformed commutator is defined in Eq. (3.8). As suspected, by simply
performing algebraic computations, we obtain

[H1, L2]q = H1L2− q̄2L2H1+ (q̄2− 1)∂3+ · · · (E6a)

[H3, L2]q = H3L2− q̄6L2H3+ (q̄6− 1)∂5+ · · · (E6b)

[H5, L2]q = H5L2− q̄10L2H5+ (q̄10− 1)∂7+ · · · (E6c)

[H7, L2]q = H7L2− q̄14L2H7+ (q̄14− 1)∂9+ · · · (E6d)

...

results, which can be generalized for arbitrary ordern of theq-KdV hierarchy as
follows:

[H2n+1, L2]q = H2n+1L2− q̄2(2n+1)L2H2n+1+ (q̄2(2n+1)− 1)∂2n+3+ · · · .
(E6e)

The terms (̄q2(2n+1)− 1)∂2n+3+ · · ·) in (E.6) are extra nonlinearq-differential
operators proportional to (̄q − 1). These extra terms vanish in the standard limit
q̄ = 1 to give rise to the standard commutator (E.4)

[H2n+1, L2]q=1 = H2n+1L2− L2H2n+1. (E7)

The important remark at this level is that if the compatibility equations exist they
must be highly nonlinear with a dependence inq̄ as they should take into account
the presence of the nonlinear extra terms in theq-deformed commutators (E.6).
The possibility to write the two compatibility linear equations can emerge naturally
as aq̄ = 1 limit of the previous equations.

ACKNOWLEDGMENT

The authors thank the PARS program N 372/98 CNR which supported this
research work.



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp679-ijtp-455416 November 19, 2002 11:20 Style file version May 30th, 2002

Algebra of q-Deformed Pseudo-differential Operators 2367

REFERENCES

Alvarez-Gaum´e, L. and Gomez, C. (1991.) Topics in Liouville theory. CERN preprint-Th6175/91.
Bakas, I. (1989a).Physics Letters B219, 283.
Bakas, I. (1989b).Communications in Mathematical Physics123, 627.
Benkaddour, I., Hssaini, M., Kessabi, M., Maroufi, B., and Sedra, M. B. (1998). Note on the algebra of

q-deformed differential operators I and II. InProceedings of the Mini Workshop on High Energy
Physics, UFR-HEP, Rabat, Morocco.

Benkaddour, I. and Saidi, E. H. (1999).Classical and Quantum Gravity16, 1793–1804.
Bouwknegt, P. and Schoutens, K. (1992).Physics Reports Physics Letters (Part C)233, 183 (for a

review).
Cornwell, J. F. (1989).Group Theory in Physics, Vol. VIII.
Das, A. (1989).Integrable Models, World Scientific, Singapore.
Di-Francesco, P., Itzykson, C., and Zuber, J. B. (1991).Communications in Mathematical Physics140,

543.
Drinfeld, V. G. (1987). Quantum groups. InProceedings of the International Congress of Mathemati-

cians, Berkeley, 1986, American Mathematical Society, p. 798.
Faddeev, L. (1984). InLes Houches XXXIX, J. Zuber and R. Stora, eds., Elsevier, Amsterdam.
Faddeev, L. D. and Takhtajan, J. (1987).Hamiltonian Methods in the Theory of Solitons, Springer,

Berlin.
Fateev, V. A. and Zamolodchikov, A. B. (1988)Nuclear Physics B280(FS18), 6411.
Frankel, E. (1996).International Mathematics Research Notices2, 55;Preprint q-alg/9511003.
Humphreys, J. E. (1972).Introduction to Lie Algebras and Representation Theory, Springer,

Heidelberg.
Jimbo, M. (1985).Letters of Mathemtical Physics10, 63.
Jimbo, M. (1986).Letters of Mathemtical Physics11, 247.
Jimbo, M. and Miwa, T. (1990).Integrable Systems in Statistical Mechanics, World Scientific,

Singapore.
Kac, V. (1977).Advances in Mathematics26, 8.
Kupershmidt, B. (1990).Integrable and Super-integrable Systems, World Scientific, Singapore.
Lax, P. D. (1968).Communications on Pure and Applied Mathematics21, 476.
Lax, P. D. (1975).Communications on Pure and Applied Mathematics28, 141.
Manin, Y. I. and Radul, A. O. (1985).Communications in Mathematical Physics98, 65.
Mansfield, P. (1982).Nuclear Physics B208, 277.
Mansfield, P. (1983).Nuclear Physics B222, 419.
Maroufi, B., Nazah, M., and Sedra, M. B. (submitted). Extended super-KP Hierarchies, string equations

and solitions.
Mathieu, P. (1988a).Physics Letters B208, 101.
Mathieu, P. (1988b).Journal of Mathematical Physics29, 2499.
Olive, D. and Turok, N. (1986).Nuclear Physics B257(FS14), 277.
Rachidi, M., Saidi, E. H., and Sedra, M. B. (2002). Note on the Di-Francescoet al. theorem. ICTP-

IC/95/176.
Saidi, E. H. and Sedra, M. B. (1937).Classical and Quantum Gravity10, 1937.
Saidi, E. H. and Sedra, M. B. (1994a).Journal of Mathematical Physics.35(6), 3190.
Saidi, E. H. and Sedra, M. B. (1994b).International Journal of Modern Physics9A(6), 891.
Saidi, E. H. and Sedra, M. B. (1994c).Modern Physics Letters9A(34), 3163.
Saidi, E. H., Sedra, M. B., and Serhani, A. (1995a).Physics Letters B353, 209.
Saidi, E. H., Sedra, M. B., and Serhani, A. (1995b).Modern Physics Letters A10,32.
Saidi, E. H., Sedra, M. B., and Zerouaoui, J. (1995a).Classical and Quantum Gravity121576.
Saidi, E. H., Sedra, M. B., and Zerouaoui, J. (1995b).Classical and Quantum Gravity12, 1705.



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp679-ijtp-455416 November 19, 2002 11:20 Style file version May 30th, 2002

2368 Benkaddour, Hssaini, Kessabi, Maroufi, and Sedra

Sedra, M. B. (1996).Journal of Mathematical Physics37, 3483.
Sedra, M. B. (1998).Nuclear Physics B513, 709–722.
Smit, J. D. (1990).Communications in Mathematical Physics128, 1.
Wess, J. and Zumino, B. (1990). CERN preprint-th-5697/90.
Xian, W. Z. (1991).Introduction to Kac-Moody Algebras, World Scientific, Singapore.
Yamagishi, K. (1988).Physics Letters B208(101), 466.
Zamolodchikov, A. B. (1985).TMP 65, 1205.


